Skip to main content
Log in

Evaluating Extrusion Deposited Additively Manufactured Fiber-Reinforced Thermoplastic Polymers as Carbon/Carbon Preforms

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Although development of high char-yielding polymers has reduced the manufacturing costs of carbon/carbon composites associated with multiple densification cycles, manufacturing highly customized complex-shaped carbon/carbon composites can still be expensive due to molds/tooling surfaces used by traditional preform production techniques. In this study, we explored whether extrusion deposition additive manufacturing (EDAM) could be used as a mold-less approach to manufacturing complex-shaped carbon/carbon composites. The thermogravimetric analysis and coupon distortion results of several short carbon fiber-reinforced thermoplastic polymers used for 3D printing were investigated, including polyphenylene sulfide, polyetherimide, poly sulfone, polyether ether ketone, and polyether sulfone. Although polyetherimide had the highest char yield \(\left(57 wt.\%\right)\), carbon fiber-reinforced polyphenylene sulfide was the best preform for manufacturing complex shapes because of its dimensional stability, with carbonized strains of \(-4.18\times{10}^{-2}\) and \(1.82\times{10}^{-1}\) at 1 \(^\circ C/min\) in the 1- and 3- direction, respectively, after heat treating to \(900\;^\circ C\). The distortion results of more complex shapes showed that EDAM can be a practical alternative over more traditional preform production techniques for manufacturing complex-shaped carbon/carbon composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References 

  1. Squire, T.H., Marschall, J.: Material property requirements for analysis and design of UHTC components in hypersonic applications. J. Eur. Ceram. Soc. 30, 2239–2251 (2010). https://doi.org/10.1016/J.JEURCERAMSOC.2010.01.026

    Article  CAS  Google Scholar 

  2. Kasen, S.D.: Thermal Management at Hypersonic Leading Edges. (2013)

  3. Van Wie, D.M., Drewry, D.G., King, D.E., Hudson, C.M.: Ultra-high temperature ceramics the hypersonic environment: Required operating conditions and design challenges. (2004). https://doi.org/10.1023/B:JMSC.0000041688.68135.8b

  4. Bertin, J.J., Cummings, R.M.: Critical hypersonic aerothermodynamic phenomena. Annu. Rev. Fluid Mech. 38, 129–157 (2006). https://doi.org/10.1146/annurev.fluid.38.050304.092041

    Article  Google Scholar 

  5. Uyanna, O., Najafi, H.: Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects. Acta Astronaut. 176, 341–356 (2020). https://doi.org/10.1016/J.ACTAASTRO.2020.06.047

    Article  Google Scholar 

  6. Glass, D.: Ceramic Matrix Composite (CMC) Thermal protection systems (TPS) and hot structures for hypersonic vehicles. In: 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, American Institute of Aeronautics and Astronautics, Reston, Virigina. (2008). https://doi.org/10.2514/6.2008-2682.

  7. Tracy, C.L., Wright, D.: Modeling the performance of hypersonic boost-glide missiles. Sci. Global Sec. 28, 135–170 (2020). https://doi.org/10.1080/08929882.2020.1864945

    Article  Google Scholar 

  8. Fitzer, E., Manocha, L.M.: Carbon Reinforcements and Carbon/Carbon Composites, 1st ed., Springer Berlin Heidelberg, Berlin, Heidelberg. (1998). https://doi.org/10.1007/978-3-642-58745-0

  9. Bansal, N.P.,Lamon, J.: Ceramic matrix composites materials, modeling and technology Edited by. (2015). http://www.wiley.com/go/permission.www.wiley.com

  10. Scarponi, C.: Carbon–carbon composites in aerospace engineering. Adv. Compos. Mater. Aerospace Eng. 385–412 (2016). https://doi.org/10.1016/B978-0-08-100037-3.00013-4

  11. Morgan, P.: Carbon fibers and their composites, 1st ed., CRC Press, Boca Raton. (2005). https://doi.org/10.1201/9781420028744

  12. Savage, G.: Carbon-carbon composites, 1st ed., Springer Netherlands, Dordrecht. (1993). https://doi.org/10.1007/978-94-011-1586-5

  13. Zaldivar, R., Martinez, A., Elhessen, R., Kim, H., Severino, J., Arredondo, V., Adams, P., Ferrelli, G.: The effect of heat-treatment temperature (HTT) on the carbon matrix development of both polyarylacetylene-and phenolic-derived carbon–Carbon (C/C) composites. J. Compos. Mater. (2023). https://doi.org/10.1177/00219983231191165

    Article  Google Scholar 

  14. Borrego, E.I., Athukorale, S., Gorla, S., Duckworth, A.K., Baker, M., Rosales, J., Johnson, W.W., Kundu, S., Toghiani, H., Farajidizaji, B., Pittman, C.U., Smith, D.W.: High carbon yielding and melt processable bis-ortho-diynylarene (BODA)-derived resins for rapid processing of dense carbon/carbon composites. Compos. B Eng. 242,(2022)

  15. McIlhagger, A., Archer, E., McIlhagger, R.: Manufacturing processes for composite materials and components for aerospace applications. Polym. Compos. Aerospace Industry  59–81 (2020). https://doi.org/10.1016/B978-0-08-102679-3.00003-4

  16. Kamiya, R., Cheeseman, B.A., Popper, P., Chou, T.W.: Some recent advances in the fabrication and design of three-dimensional textile preforms: a review. Compos. Sci. Technol. 60, 33–47 (2000). https://doi.org/10.1016/S0266-3538(99)00093-7

    Article  Google Scholar 

  17. Chen, X., Taylor, L.W., Tsai, L.-J.: An overview on fabrication of three-dimensional woven textile preforms for composites. (n.d.). https://doi.org/10.1177/0040517510392471

  18. Liu, Y., Chou, T.W.: Additive manufacturing of multidirectional preforms and composites: from three-dimensional to four-dimensional. Mater. Today Adv. 5,(2020)

  19. Attaran, M.: The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus Horiz. 60, 677–688 (2017). https://doi.org/10.1016/J.BUSHOR.2017.05.011

    Article  Google Scholar 

  20. Pereira, T., Kennedy, J.V., Potgieter, J.: A comparison of traditional manufacturing vs additive manufacturing, the best method for the job. Procedia Manuf. 30, 11–18 (2019). https://doi.org/10.1016/J.PROMFG.2019.02.003

    Article  Google Scholar 

  21. Sun, J., Ye, D., Zou, J., Chen, X., Wang, Y., Yuan, J., Liang, H., Qu, H., Binner, J., Bai, J.: A review on additive manufacturing of ceramic matrix composites. J. Mater. Sci. Technol. 138, 1–16 (2023). https://doi.org/10.1016/J.JMST.2022.06.039

    Article  CAS  Google Scholar 

  22. Yi, X., Tan, Z.J., Yu, W.J., Li, J., Li, B.J., Huang, B.Y., Liao, J.: Three dimensional printing of carbon/carbon composites by selective laser sintering. Carbon N Y. 96, 603–607 (2016). https://doi.org/10.1016/J.CARBON.2015.09.110

    Article  CAS  Google Scholar 

  23. Zhu, W., Fu, H., Xu, Z., Liu, R., Jiang, P., Shao, X., Shi, Y., Yan, C.: Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology. J. Eur. Ceram. Soc. 38, 4604–4613 (2018). https://doi.org/10.1016/J.JEURCERAMSOC.2018.06.022

    Article  CAS  Google Scholar 

  24. Chen, X., Yin, J., Liu, X., Pei, B., Huang, J., Peng, X., Xia, A., Huang, L., Huang, Z.: Effect of laser power on mechanical properties of SiC composites rapidly fabricated by selective laser sintering and direct liquid silicon infiltration. Ceram. Int. 48, 19123–19131 (2022). https://doi.org/10.1016/J.CERAMINT.2022.03.203

    Article  CAS  Google Scholar 

  25. Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., Liu, C., Li, Y., Wang, P., He, Y.: 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 39, 661–687 (2019). https://doi.org/10.1016/J.JEURCERAMSOC.2018.11.013

    Article  CAS  Google Scholar 

  26. Zhang, H., Yang, Y., Hu, K., Liu, B., Liu, M., Huang, Z.: Stereolithography-based additive manufacturing of lightweight and high-strength Cf/SiC ceramics. Addit. Manuf. 34,(2020)

  27. Schlotthauer, T., Nolan, D., Middendorf, P.: Influence of short carbon and glass fibers on the curing behavior and accuracy of photopolymers used in stereolithography. Addit. Manuf. 42,(2021)

  28. Lukaszewicz, D.H.-J.A., Ward, C., Potter, K.D.: The engineering aspects of automated prepreg layup: History, present and future. Compos. B Eng. 43, 997–1009 (2012). https://doi.org/10.1016/j.compositesb.2011.12.003

    Article  CAS  Google Scholar 

  29. Brasington, A., Sacco, C., Halbritter, J., Wehbe, R., Harik, R.: Automated fiber placement: A review of history, current technologies, and future paths forward. Compos. Part C Open Access 6,(2021)

  30. Saadi, M.A.S.R., Maguire, A., Pottackal, N.T., Thakur, M.S.H., Ikram, MMd., Hart, A.J., Ajayan, P.M., Rahman, M.M.: Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. 34, 2108855 (2022). https://doi.org/10.1002/adma.202108855

    Article  CAS  Google Scholar 

  31. Wang, W., Zhang, L., Dong, X., Wu, J., Zhou, Q., Li, S., Shen, C., Liu, W., Wang, G., He, R.: Additive manufacturing of fiber reinforced ceramic matrix composites: Advances, challenges, and prospects. Ceram. Int. 48, 19542–19556 (2022). https://doi.org/10.1016/J.CERAMINT.2022.04.146

    Article  CAS  Google Scholar 

  32. Pibulchinda, P., Barocio, E., Favaloro, A.J., Pipes, R.B.: Influence of printing conditions on the extrudate shape and fiber orientation in extrusion deposition additive manufacturing. Compos. B Eng. 261,(2023)

  33. Rau, D.A., Bortner, M.J., Williams, C.B.: A rheology roadmap for evaluating the printability of material extrusion inks. Addit. Manuf. 75,(2023)

  34. Shahzad, A., Lazoglu, I.: Direct ink writing (DIW) of structural and functional ceramics: Recent achievements and future challenges. Compos. B Eng. 225,(2021)

  35. Brenken, B., Barocio, E., Favaloro, A., Kunc, V., Pipes, R.B.: Fused filament fabrication of fiber-reinforced polymers: A review. Addit. Manuf. 21, 1–16 (2018). https://doi.org/10.1016/J.ADDMA.2018.01.002

    Article  CAS  Google Scholar 

  36. Beland, S.: High Performance Thermoplastics and Their Resin Composites, 1st ed., Noyes Data Corporation. (1990). https://www.sciencedirect.com/book/9780815512783/high-performance-thermoplastic-resins-and-their-composites#book-description

  37. Brenken, B., Barocio, E., Favaloro, A., Kunc, V., Pipes, R.B.: Development and validation of extrusion deposition additive manufacturing process simulations. Addit. Manuf. 25, 218–226 (2019). https://doi.org/10.1016/J.ADDMA.2018.10.041

    Article  Google Scholar 

  38. Wedgewood, A., Pibulchinda, P., Vaca, E., Hill, C., Bogdanor, M.: Materials development and advanced process simulation for additive manufacturing with fiber-reinforced thermoplastics, golden. CO (United States) (2021). https://doi.org/10.2172/1769016

    Article  Google Scholar 

  39. Franchin, G., Wahl, L., Colombo, P.: Direct ink writing of ceramic matrix composite structures. J. Am. Ceram. Soc. 100, 4397–4401 (2017). https://doi.org/10.1111/jace.15045

    Article  CAS  Google Scholar 

  40. Lu, Z., Xia, Y., Miao, K., Li, S., Zhu, L., Nan, H., Cao, J., Li, D.: Microstructure control of highly oriented short carbon fibres in SiC matrix composites fabricated by direct ink writing. Ceram. Int. 45, 17262–17267 (2019). https://doi.org/10.1016/J.CERAMINT.2019.05.283

    Article  CAS  Google Scholar 

  41. Vaca, E.B.: Fusion bonding of fiber reinforced semi-crystalline polymers in extrusion deposition additive manufacturing. (2018). https://doi.org/10.25394/PGS.7434068.v1

  42. Heller, B.P., Smith, D.E., Jack, D.A.: Planar deposition flow modeling of fiber filled composites in large area additive manufacturing. Addit. Manuf. 25, 227–238 (2019). https://doi.org/10.1016/J.ADDMA.2018.10.031

    Article  CAS  Google Scholar 

  43. Tekinalp, H.L., Kunc, V., Velez-Garcia, G.M., Duty, C.E., Love, L.J., Naskar, A.K., Blue, C.A., Ozcan, S.: Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos. Sci. Technol. 105, 144–150 (2014). https://doi.org/10.1016/J.COMPSCITECH.2014.10.009

    Article  CAS  Google Scholar 

  44. Wu, H., Sulkis, M., Driver, J., Saade-Castillo, A., Thompson, A., Koo, J.H.: Multi-functional ULTEMTM1010 composite filaments for additive manufacturing using Fused Filament Fabrication (FFF). Addit. Manuf. 24, 298–306 (2018). https://doi.org/10.1016/J.ADDMA.2018.10.014

    Article  CAS  Google Scholar 

  45. Wu, H., Kafi, A., Yee, C., Atak, O., Langston, J.H., Reber, R., Misasi, J., Kim, S., Fahy, W.P., Bateman, S., Koo, J.H.:  Ablation Performances of Additively Manufactured High-Temperature Thermoplastic Polymers. In: AIAA Scitech 2020 Forum, American Institute of Aeronautics and Astronautics, Reston, Virginia. (2020). https://doi.org/10.2514/6.2020-1125

  46. Wu, H., Kim, S.D., Yee, C.M., Fahy, W.P., August, Z., Liu, Z., Koo, J.H.:  Ablation Performance of 3D Printed Continuous Carbon Fiber-Reinforced PEEK. In: AIAA Scitech 2021 Forum, American Institute of Aeronautics and Astronautics, Reston, Virginia. (2021). https://doi.org/10.2514/6.2021-0535

  47. Thomas, A.J., Barocio, E., Kapre, V., Pibulchinda, P., Nguyen, F.N., Pipes, R.B.: Relationship between flow-controlled fiber orientation and spring-in deformation in extrusion deposition additive manufacturing. In: 2022 International Solid Freeform Fabrication Symposium. (2022). https://doi.org/10.26153/tsw/44204 . Accessed 29 Sept 2023

  48. Barocio, E., Kapre, V., Pibulchinda, P., Ramirez, M., Franc, A., Susnjara, J.: Material Characterization for Large Scale Additive Manufacturing (AM), West Lafayette. (2022). http://www.osti.gov/scitech/

  49. Thomas, A.J., Barocio, E., Pipes, R.B.: A machine learning approach to determine the elastic properties of printed fiber-reinforced polymers. Compos. Sci. Technol. 220,(2022)

  50. Carpier, Y., Vieille, B., Delpouve, N., Dargent, E.: Isothermal and anisothermal decomposition of carbon fibres polyphenylene sulfide composites for fire behavior analysis. Fire Saf. J. 109 (2019). https://doi.org/10.1016/j.firesaf.2019.102868

  51. Perng, L.H.: Thermal decomposition characteristics of poly(phenylene sul®de) by stepwise Py-GC/MS and TG/MS techniques. (2000). https://doi.org/10.1016/S0141-3910(00)00077-X

  52. Patel, P., Hull, T.R., McCabe, R.W., Flath, D., Grasmeder, J., Percy, M.: Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies. Polym. Degrad. Stab. 95, 709–718 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.01.024

    Article  CAS  Google Scholar 

  53. Tsai, C.J., Perng, L.H., Ling, Y.C.: A Study of Thermal Degradation of Poly(aryl-ether-ether-ketone) Using Stepwise Pyrolysis/Gas Chromatography/Mass Spectrometry. (1997). https://doi.org/10.1002/(SICI)1097-0231(199712)11:18<1987::AID-RCM100>3.0.CO;2-Q

  54. Molnár, G., Botvay, A., Pöppl, L., Torkos, K., Borossay, J., Máthé, Á., Török, T.: Thermal degradation of chemically modified polysulfones. Polym. Degrad. Stab. 89, 410–417 (2005). https://doi.org/10.1016/J.POLYMDEGRADSTAB.2005.01.031

    Article  Google Scholar 

  55. Perng, L.H.: Thermal Degradation Mechanism of Poly(arylene sulfone)s by Stepwise Py-GC/MS. (2000). https://doi.org/10.1002/(SICI)1099-0518(20000201)38:3<583::AID-POLA23>3.0.CO;2-6

  56. Carroccio, S., Puglisi, C., Montaudo, G.: Thermal degradation mechanisms of polyetherimide investigated by direct pyrolysis mass spectrometry (1999). https://doi.org/10.1002/(sici)1521-3935(19991001)200:10%3c2345::aid-macp2345%3e3.0.co;2-t

  57. Perng, L.-H.: Thermal decomposition characteristics of poly(ether imide) by TG/MS. J. Polym. Res. 7 (2000). https://doi.org/10.1007/s10965-006-0119-7

  58. Carpier, Y., Alia, A., Vieille, B., Barbe, F.: Experiments based analysis of thermal decomposition kinetics model case of carbon fibers PolyPhenylene Sulfide composites. Polym. Degrad. Stab. 186,(2021)

  59. Hache, F., Delichatsios, M., Fateh, T., Zhang, J.: Comparison of methods for thermal analysis: Application to PEEK and a composite PEEK+CF. J. Fire Sci. 33, 232–246 (2015). https://doi.org/10.1177/0734904115584154

    Article  CAS  Google Scholar 

  60. Tadini, P., Grange, N., Chetehouna, K., Gascoin, N., Senave, S., Reynaud, I.: Thermal degradation analysis of innovative PEKK-based carbon composites for high-temperature aeronautical components. Aerosp. Sci. Technol. 65, 106–116 (2017). https://doi.org/10.1016/j.ast.2017.02.011

    Article  Google Scholar 

  61. Li, J., Stoliarov, S.I.: Measurement of kinetics and thermodynamics of the thermal degradation for charring polymers. Polym. Degrad. Stab. 106, 2–15 (2014). https://doi.org/10.1016/J.POLYMDEGRADSTAB.2013.09.022

    Article  CAS  Google Scholar 

  62. Banerjee, R., Sinha Ray, S., Banerjee, R., Ray, S.S.: Foamability and special applications of microcellular thermoplastic polymers: a review on recent advances and future direction. (2020). https://doi.org/10.1002/mame.202000366

Download references

Funding

This work was supported by the United States Air Force Research Laboratory (AFRL RQH, Contract No. FA8650-20-2-2405). Distribution Statement A: Approved for Public Release; Distribution is Unlimited. PA# AFRL-2023-2585.

Author information

Authors and Affiliations

Authors

Contributions

Edwin S. Romero – Material Preparation, Validation, Formal Analysis, Data Curation, Writing – Original Draft & Writing – Review & Editing; Eduardo Barocio – Conceptualization, Methodology, Material Preparation, Writing – Review & Editing, Supervision; Rodney W. Trice – Funding Acquisition, Conceptualization, Methodology, Writing – Review & Editing, Supervision.

Corresponding author

Correspondence to Edwin S. Romero.

Ethics declarations

Conflict of Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: submission of non-provisional patent application #63,401,841 to the United States Patent and Trademark Office.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, E.S., Barocio, E. & Trice, R.W. Evaluating Extrusion Deposited Additively Manufactured Fiber-Reinforced Thermoplastic Polymers as Carbon/Carbon Preforms. Appl Compos Mater 31, 399–419 (2024). https://doi.org/10.1007/s10443-023-10176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10176-y

Keywords

Navigation