Skip to main content

Manufacturing Process Effect on the Mechanical Properties of Glass Fiber/Polypropylene Composite Under High Strain Rate Loading: Woven (W-GF-PP) and Compressed GF50-PP

Abstract

Long glass fiber thermoplastic laminates have garnered significant attention for their potential use in designing structural parts across various sectors, including automotive, aerospace, and petroleum. The growing demand for lightweight and reliable materials in hydrogen vessel reservoirs, intended for future vehicles, necessitates understanding the fast dynamic behavior (crash) of these materials for effective structural design in such applications. This study presents an optimized approach for experimentally characterizing the overall dynamic mechanical behavior of Twill woven glass fiber reinforced polypropylene (W-GF-PP) laminates. The methodology focuses on reporting the strain rate effect on the material response while attempting to isolate the inherent inertial disturbances in the specimen attributed to the test system. Tensile tests have been conducted until the specimen's total failure for three specific relative orientations of fiber: 0°, 90°, and ± 45°. The tests span a strain rate range from quasi-static (10–4 s−1) up to 2000 mm\(\cdot\)s−1 (approximately 160 s−1, depending on the specimen's actual response). The material's behavior appears sensitive, particularly for the ± 45° fiber orientation. The study also examines the impact of the manufacturing process type on the dynamic behavior of the reinforced polypropylene.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Availability of Data and Materials

The authors declare that the data and the materials of this study are available within the article.

References

  1. Fliegener, S., Luke, M., Gumbsch, P.: 3D microstructure modeling of long fiber reinforced thermoplastics. Compos. Sci. Technol. 104, 136–145 (2014). https://doi.org/10.1016/j.compscitech.2014.09.009

    Article  CAS  Google Scholar 

  2. Vina, J., Argüelles, A., Canteli, A.: Influence of temperature on the fatigue behaviour of glass fibre reinforced polypropylene. Strain 47(3), 222–226 (2011)

    Article  CAS  Google Scholar 

  3. Thomason, J.: Micromechanical parameters from macromechanical measurements on glass reinforced polypropylene. Compos. Sci. Technol. 62(10–11), 1455–1468 (2002)

    Article  CAS  Google Scholar 

  4. Nejhad, M.G., Parvizi-Majidi, A.: Impact behaviour and damage tolerance of woven carbon fibre-reinforced thermoplastic composites. Composites 21(2), 155–168 (1990)

    Article  Google Scholar 

  5. Ferreira, J.A.M., Costa, J.D.M., Reis, P.N.B.: Static and fatigue behaviour of glass-fibre-reinforced polypropylene composites. Theor. Appl. Fract. Mech. 31(1), 67–74 (1999). https://doi.org/10.1016/S0167-8442(98)00068-8

    Article  CAS  Google Scholar 

  6. Ferreira, J.A.M., Costa, J.D.M., Richardson, M.O.W.: Effect of notch and test conditions on the fatigue of a glass-fibre-reinforced polypropylene composite. Compos. Sci. Technol. 57(9), 1243–1248 (1997). https://doi.org/10.1016/S0266-3538(97)00052-3

    Article  CAS  Google Scholar 

  7. Bartkowiak, M., Liebig, W.V., Montesano, J., Weidenmann, K.A.: Effects of hybridization on the tension–tension fatigue behavior of continuous-discontinuous fiber-reinforced sheet molding compound composites. Int. J. Fatigue 161, 106879 (2022). https://doi.org/10.1016/j.ijfatigue.2022.106879

    Article  CAS  Google Scholar 

  8. Belliveau, R., Landry, B., LaPlante, G.: Comparative study of the mechanical properties of woven and unidirectional fibres in discontinuous long-fibre composites. J. Thermoplast. Compos. Mater. 0(0), 08927057221091084 (2022). https://doi.org/10.1177/08927057221091084

    Article  CAS  Google Scholar 

  9. Ning, H., Janowski, G.M., Vaidya, U.K., Husman, G.: Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle. Compos. Struct. 80(1), 82–91 (2007)

    Article  Google Scholar 

  10. Vieille, B., Albouy, W., Chevalier, L., Taleb, L.: About the influence of stamping on thermoplastic-based composites for aeronautical applications. Compos. B Eng. 45(1), 821–834 (2013)

    Article  CAS  Google Scholar 

  11. Robert, M., Roy, R., Benmokrane, B.: Environmental effects on glass fiber reinforced polypropylene thermoplastic composite laminate for structural applications. Polym. Compos. 31(4), 604–611 (2010)

    Article  CAS  Google Scholar 

  12. Ramakrishna, S., Mayer, J., Wintermantel, E., Leong, K.W.: Biomedical applications of polymer-composite materials: a review. Compos. Sci. Technol. 61(9), 1189–1224 (2001)

    Article  CAS  Google Scholar 

  13. Kashani, M.H., Hosseini, A., Sassani, F., Ko, F.K., Milani, A.S.: Understanding different types of coupling in mechanical behavior of woven fabric reinforcements: A critical review and analysis. Compos. Struct. 179, 558–567 (2017). https://doi.org/10.1016/j.compstruct.2017.06.069

    Article  Google Scholar 

  14. Naik, N.K., Chandra Sekher, Y., Meduri, S.: Damage in woven-fabric composites subjected to low-velocity impact. Compos. Sci. Technol. 60(5), 731–744 (2000). https://doi.org/10.1016/S0266-3538(99)00183-9

    Article  Google Scholar 

  15. Aisyah, H.A., et al.: A comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers 13(3), 471 (2021). Available: https://www.mdpi.com/2073-4360/13/3/471

  16. Behera, B.K., Dash, B.P.: Mechanical behavior of 3D woven composites. Mater. Des. 67, 261–271 (2015). https://doi.org/10.1016/j.matdes.2014.11.020

    Article  CAS  Google Scholar 

  17. Kiss, P., Stadlbauer, W., Burgstaller, C., Archodoulaki, V.-M.: Development of high-performance glass fibre-polypropylene composite laminates: Effect of fibre sizing type and coupling agent concentration on mechanical properties. Compos. Part A Appl. Sci. Manuf. 138, 106056 (2020). https://doi.org/10.1016/j.compositesa.2020.106056

    Article  CAS  Google Scholar 

  18. Russo, P., Acierno, D., Simeoli, G., Iannace, S., Sorrentino, L.: Flexural and impact response of woven glass fiber fabric/polypropylene composites. Compos. B Eng. 54, 415–421 (2013)

    Article  CAS  Google Scholar 

  19. Ramakrishna, S., Hamada, H., Rydin, R.W., Chou, T.W.: Impact damage resistance of knitted glass fiber fabric reinforced polypropylene composites. Sci. Eng. Compos. Mater. 4(2), 61–72 (1995). https://doi.org/10.1515/SECM.1995.4.2.61

    Article  CAS  Google Scholar 

  20. Bureau, M.N., Denault, J.: Fatigue resistance of continuous glass fiber/polypropylene composites: consolidation dependence. Compos. Sci. Technol. 64(12), 1785–1794 (2004). https://doi.org/10.1016/j.compscitech.2004.01.016

    Article  CAS  Google Scholar 

  21. Hufenbach, W., et al.: Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications. Materi. Des. 32(3), 1468–1476 (2011). https://doi.org/10.1016/j.matdes.2010.08.049

    Article  CAS  Google Scholar 

  22. Suresh, S., Kumar, V.S.S.: Experimental determination of the mechanical behavior of glass fiber reinforced polypropylene composites. Procedia Eng. 97, 632–641 (2014). https://doi.org/10.1016/j.proeng.2014.12.292

    Article  CAS  Google Scholar 

  23. Nikooharf, M.H., Rezaei-Khamseh, M., Shirinbayan, M., Fitoussi, J., Tcharkhtchi, A.: Comparison of the physicochemical, rheological, and mechanical properties of core and surface of polypropylene composite (GF50-PP) plate fabricated by thermocompression process. Polym. Compos. 42(7), 3293–3306 (2021)

    Article  CAS  Google Scholar 

  24. Sathishkumar, T., Satheeshkumar, S., Naveen, J.: Glass fiber-reinforced polymer composites – a review. J. Reinf. Plast. Compos. 33(13), 1258–1275 (2014). https://doi.org/10.1177/0731684414530790

    Article  CAS  Google Scholar 

  25. Simeoli, G., Acierno, D., Meola, C., Sorrentino, L., Iannace, S., Russo, P.: The role of interface strength on the low velocity impact behaviour of PP/glass fibre laminates. Compos. Part B Eng. 62, 88–96 (2014). https://doi.org/10.1016/j.compositesb.2014.02.018

    Article  CAS  Google Scholar 

  26. Kashani, M.H., Rashidi, A., Crawford, B.J., Milani, A.S.: Analysis of a two-way tension-shear coupling in woven fabrics under combined loading tests: Global to local transformation of non-orthogonal normalized forces and displacements. Compos. Part A Appl. Sci. Manuf. 88, 272–285 (2016). https://doi.org/10.1016/j.compositesa.2016.06.004

    Article  Google Scholar 

  27. Huang, Zheng-Ming., Ramakrishna, S.: Modeling mechanical properties of knitted fabric composites - Part I: Overview and geometric description. Sci. Eng. Compos. Mater. 10(3), 163–188 (2002). https://doi.org/10.1515/SECM.2002.10.3.163

    Article  Google Scholar 

  28. Pardo, S., Baptiste, D., Décobert, F., Fitoussi, J., Joannic, R.: Tensile dynamic behaviour of a quasi-unidirectonal E-glass/polyester composite. Compos. Sci. Technol. 62(4), 579–584 (2002)

    Article  CAS  Google Scholar 

  29. Ayari, H., et al.: Micromechanical modelling of dynamic behavior of advanced sheet molding compound (A-SMC) composite. Appl. Compos. Mater. 27(3), 321–335 (2020). https://doi.org/10.1007/s10443-020-09811-9

    Article  Google Scholar 

  30. Shirinbayan, M., Fitoussi, J., Meraghni, F., Surowiec, B., Bocquet, M., Tcharkhtchi, A.: High strain rate visco-damageable behavior of Advanced Sheet Molding Compound (A-SMC) under tension. Compos. B Eng. 82, 30–41 (2015)

    Article  CAS  Google Scholar 

  31. Renault, N.A., Meraghni, F., Peltier, L., Fitoussi, J.: Microstructural and experimental analysis of strain rate effect for short glass fiber reinforced polypropylene (2015)

  32. Jendli, Z., Walrick, J.-C., Bocquet, M., Fitoussi, J.: Strain rate effects on the mechanical behavior of carbon-thermoplastic matrix woven composites. Eur. Conf. Compos. Mater. (2014)

  33. Fitoussi, J., Nikooharf, M.H., Kallel, A., Shirinbayan, M.: Mechanical properties and damage behavior of polypropylene composite (GF50-PP) plate fabricated by thermocompression process under high strain rate loading at room and cryogenic temperatures. Appl. Compos. Mater. (2022). https://doi.org/10.1007/s10443-022-10047-y

    Article  Google Scholar 

  34. Image Processing Software ImageJ [Online]. Available: https://imagej.nih.gov/ij/

  35. Fitoussi, J., Meraghni, F., Jendli, Z., Hug, G., Baptiste, D.: Experimental methodology for high strain-rates tensile behaviour analysis of polymer matrix composites. Compos. Sci. Technol. 65(14), 2174–2188 (2005)

    Article  CAS  Google Scholar 

  36. Jendli, Z., Fitoussi, J., Meraghni, F., Baptiste, D.: Anisotropic strain rate effects on the fibre–matrix interface decohesion in sheet moulding compound composites. Compos. Sci. Technol. 65(3–4), 387–393 (2005)

    Article  CAS  Google Scholar 

  37. Fitoussi, J., Bocquet, M., Meraghni, F.: Effect of the matrix behavior on the damage of ethylene–propylene glass fiber reinforced composite subjected to high strain rate tension. Compos. B Eng. 45(1), 1181–1191 (2013)

    Article  CAS  Google Scholar 

  38. Hug, G., Thevenet, P., Fitoussi, J., Baptiste, D.: Effect of the loading rate on mode I interlaminar fracture toughness of laminated composites. Eng. Fract. Mech. 73(16), 2456–2462 (2006)

    Article  Google Scholar 

  39. ISO 527–2:2012, ISO, 2012. [Online]. Available: https://www.iso.org/standard/56046.html

  40. ISO 527–1:2019, ISO, 2019. [Online]. Available: https://www.iso.org/standard/75824.html

  41. ISO 18872:2007, ISO, 2007. [Online]. Available: https://www.iso.org/standard/38914.html

  42. ISO 8256:2004, ISO, 2004. [Online]. Available: https://www.iso.org/standard/35900.html

  43. Hibbit, H., Karlsson, B., Sorensen, P.: ABAQUS theory and user’s manual. Ed: Version. 2010

  44. Shirinbayan, M., Rezaei-Khamseh, M., Nikooharf, M.H., Tcharkhtchi, A., Fitoussi, J.: Multi-scale analysis of mechanical properties and damage behavior of polypropylene composite (GF50-PP) plate at room and cryogenic temperatures. Compos. Struct. (2021). https://doi.org/10.1016/j.compstruct.2021.114713

    Article  Google Scholar 

  45. Cox, B.N., Dadkhah, M.S., Morris, W.L., Flintoff, J.G.: Failure mechanisms of 3D woven composites in tension, compression, and bending. Acta Metall. Mater. 42(12), 3967–3984 (1994). https://doi.org/10.1016/0956-7151(94)90174-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mohammadali Shirinbayan, Khaled Benfriha, Achraf Kallel, Zouhaier Jendli, Joseph Fitoussi: construct the idea. Mohammadali Shirinbayan, Mohammad Hossein Nikooharf, Khaled Benfriha, Achraf Kallel, Navideh Abbasnezhad, Zouhaier Jendli, Joseph Fitoussi: analyzed results, draft manuscript preparation, and wrote the paper. Mohammadali Shirinbayan, Mohammad Hossein Nikooharf, Khaled Benfriha, Achraf Kallel, Navideh Abbasnezhad, Zouhaier Jendli: corrected the English and the paper format.

Corresponding author

Correspondence to M. Shirinbayan.

Ethics declarations

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirinbayan, M., Abbasnezhad, N., Nikooharf, M.H. et al. Manufacturing Process Effect on the Mechanical Properties of Glass Fiber/Polypropylene Composite Under High Strain Rate Loading: Woven (W-GF-PP) and Compressed GF50-PP. Appl Compos Mater 30, 1717–1736 (2023). https://doi.org/10.1007/s10443-023-10143-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10143-7

Keywords