Abstract
Long glass fiber thermoplastic laminates have garnered significant attention for their potential use in designing structural parts across various sectors, including automotive, aerospace, and petroleum. The growing demand for lightweight and reliable materials in hydrogen vessel reservoirs, intended for future vehicles, necessitates understanding the fast dynamic behavior (crash) of these materials for effective structural design in such applications. This study presents an optimized approach for experimentally characterizing the overall dynamic mechanical behavior of Twill woven glass fiber reinforced polypropylene (W-GF-PP) laminates. The methodology focuses on reporting the strain rate effect on the material response while attempting to isolate the inherent inertial disturbances in the specimen attributed to the test system. Tensile tests have been conducted until the specimen's total failure for three specific relative orientations of fiber: 0°, 90°, and ± 45°. The tests span a strain rate range from quasi-static (10–4 s−1) up to 2000 mm\(\cdot\)s−1 (approximately 160 s−1, depending on the specimen's actual response). The material's behavior appears sensitive, particularly for the ± 45° fiber orientation. The study also examines the impact of the manufacturing process type on the dynamic behavior of the reinforced polypropylene.
This is a preview of subscription content, access via your institution.


















Availability of Data and Materials
The authors declare that the data and the materials of this study are available within the article.
References
Fliegener, S., Luke, M., Gumbsch, P.: 3D microstructure modeling of long fiber reinforced thermoplastics. Compos. Sci. Technol. 104, 136–145 (2014). https://doi.org/10.1016/j.compscitech.2014.09.009
Vina, J., Argüelles, A., Canteli, A.: Influence of temperature on the fatigue behaviour of glass fibre reinforced polypropylene. Strain 47(3), 222–226 (2011)
Thomason, J.: Micromechanical parameters from macromechanical measurements on glass reinforced polypropylene. Compos. Sci. Technol. 62(10–11), 1455–1468 (2002)
Nejhad, M.G., Parvizi-Majidi, A.: Impact behaviour and damage tolerance of woven carbon fibre-reinforced thermoplastic composites. Composites 21(2), 155–168 (1990)
Ferreira, J.A.M., Costa, J.D.M., Reis, P.N.B.: Static and fatigue behaviour of glass-fibre-reinforced polypropylene composites. Theor. Appl. Fract. Mech. 31(1), 67–74 (1999). https://doi.org/10.1016/S0167-8442(98)00068-8
Ferreira, J.A.M., Costa, J.D.M., Richardson, M.O.W.: Effect of notch and test conditions on the fatigue of a glass-fibre-reinforced polypropylene composite. Compos. Sci. Technol. 57(9), 1243–1248 (1997). https://doi.org/10.1016/S0266-3538(97)00052-3
Bartkowiak, M., Liebig, W.V., Montesano, J., Weidenmann, K.A.: Effects of hybridization on the tension–tension fatigue behavior of continuous-discontinuous fiber-reinforced sheet molding compound composites. Int. J. Fatigue 161, 106879 (2022). https://doi.org/10.1016/j.ijfatigue.2022.106879
Belliveau, R., Landry, B., LaPlante, G.: Comparative study of the mechanical properties of woven and unidirectional fibres in discontinuous long-fibre composites. J. Thermoplast. Compos. Mater. 0(0), 08927057221091084 (2022). https://doi.org/10.1177/08927057221091084
Ning, H., Janowski, G.M., Vaidya, U.K., Husman, G.: Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle. Compos. Struct. 80(1), 82–91 (2007)
Vieille, B., Albouy, W., Chevalier, L., Taleb, L.: About the influence of stamping on thermoplastic-based composites for aeronautical applications. Compos. B Eng. 45(1), 821–834 (2013)
Robert, M., Roy, R., Benmokrane, B.: Environmental effects on glass fiber reinforced polypropylene thermoplastic composite laminate for structural applications. Polym. Compos. 31(4), 604–611 (2010)
Ramakrishna, S., Mayer, J., Wintermantel, E., Leong, K.W.: Biomedical applications of polymer-composite materials: a review. Compos. Sci. Technol. 61(9), 1189–1224 (2001)
Kashani, M.H., Hosseini, A., Sassani, F., Ko, F.K., Milani, A.S.: Understanding different types of coupling in mechanical behavior of woven fabric reinforcements: A critical review and analysis. Compos. Struct. 179, 558–567 (2017). https://doi.org/10.1016/j.compstruct.2017.06.069
Naik, N.K., Chandra Sekher, Y., Meduri, S.: Damage in woven-fabric composites subjected to low-velocity impact. Compos. Sci. Technol. 60(5), 731–744 (2000). https://doi.org/10.1016/S0266-3538(99)00183-9
Aisyah, H.A., et al.: A comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers 13(3), 471 (2021). Available: https://www.mdpi.com/2073-4360/13/3/471
Behera, B.K., Dash, B.P.: Mechanical behavior of 3D woven composites. Mater. Des. 67, 261–271 (2015). https://doi.org/10.1016/j.matdes.2014.11.020
Kiss, P., Stadlbauer, W., Burgstaller, C., Archodoulaki, V.-M.: Development of high-performance glass fibre-polypropylene composite laminates: Effect of fibre sizing type and coupling agent concentration on mechanical properties. Compos. Part A Appl. Sci. Manuf. 138, 106056 (2020). https://doi.org/10.1016/j.compositesa.2020.106056
Russo, P., Acierno, D., Simeoli, G., Iannace, S., Sorrentino, L.: Flexural and impact response of woven glass fiber fabric/polypropylene composites. Compos. B Eng. 54, 415–421 (2013)
Ramakrishna, S., Hamada, H., Rydin, R.W., Chou, T.W.: Impact damage resistance of knitted glass fiber fabric reinforced polypropylene composites. Sci. Eng. Compos. Mater. 4(2), 61–72 (1995). https://doi.org/10.1515/SECM.1995.4.2.61
Bureau, M.N., Denault, J.: Fatigue resistance of continuous glass fiber/polypropylene composites: consolidation dependence. Compos. Sci. Technol. 64(12), 1785–1794 (2004). https://doi.org/10.1016/j.compscitech.2004.01.016
Hufenbach, W., et al.: Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications. Materi. Des. 32(3), 1468–1476 (2011). https://doi.org/10.1016/j.matdes.2010.08.049
Suresh, S., Kumar, V.S.S.: Experimental determination of the mechanical behavior of glass fiber reinforced polypropylene composites. Procedia Eng. 97, 632–641 (2014). https://doi.org/10.1016/j.proeng.2014.12.292
Nikooharf, M.H., Rezaei-Khamseh, M., Shirinbayan, M., Fitoussi, J., Tcharkhtchi, A.: Comparison of the physicochemical, rheological, and mechanical properties of core and surface of polypropylene composite (GF50-PP) plate fabricated by thermocompression process. Polym. Compos. 42(7), 3293–3306 (2021)
Sathishkumar, T., Satheeshkumar, S., Naveen, J.: Glass fiber-reinforced polymer composites – a review. J. Reinf. Plast. Compos. 33(13), 1258–1275 (2014). https://doi.org/10.1177/0731684414530790
Simeoli, G., Acierno, D., Meola, C., Sorrentino, L., Iannace, S., Russo, P.: The role of interface strength on the low velocity impact behaviour of PP/glass fibre laminates. Compos. Part B Eng. 62, 88–96 (2014). https://doi.org/10.1016/j.compositesb.2014.02.018
Kashani, M.H., Rashidi, A., Crawford, B.J., Milani, A.S.: Analysis of a two-way tension-shear coupling in woven fabrics under combined loading tests: Global to local transformation of non-orthogonal normalized forces and displacements. Compos. Part A Appl. Sci. Manuf. 88, 272–285 (2016). https://doi.org/10.1016/j.compositesa.2016.06.004
Huang, Zheng-Ming., Ramakrishna, S.: Modeling mechanical properties of knitted fabric composites - Part I: Overview and geometric description. Sci. Eng. Compos. Mater. 10(3), 163–188 (2002). https://doi.org/10.1515/SECM.2002.10.3.163
Pardo, S., Baptiste, D., Décobert, F., Fitoussi, J., Joannic, R.: Tensile dynamic behaviour of a quasi-unidirectonal E-glass/polyester composite. Compos. Sci. Technol. 62(4), 579–584 (2002)
Ayari, H., et al.: Micromechanical modelling of dynamic behavior of advanced sheet molding compound (A-SMC) composite. Appl. Compos. Mater. 27(3), 321–335 (2020). https://doi.org/10.1007/s10443-020-09811-9
Shirinbayan, M., Fitoussi, J., Meraghni, F., Surowiec, B., Bocquet, M., Tcharkhtchi, A.: High strain rate visco-damageable behavior of Advanced Sheet Molding Compound (A-SMC) under tension. Compos. B Eng. 82, 30–41 (2015)
Renault, N.A., Meraghni, F., Peltier, L., Fitoussi, J.: Microstructural and experimental analysis of strain rate effect for short glass fiber reinforced polypropylene (2015)
Jendli, Z., Walrick, J.-C., Bocquet, M., Fitoussi, J.: Strain rate effects on the mechanical behavior of carbon-thermoplastic matrix woven composites. Eur. Conf. Compos. Mater. (2014)
Fitoussi, J., Nikooharf, M.H., Kallel, A., Shirinbayan, M.: Mechanical properties and damage behavior of polypropylene composite (GF50-PP) plate fabricated by thermocompression process under high strain rate loading at room and cryogenic temperatures. Appl. Compos. Mater. (2022). https://doi.org/10.1007/s10443-022-10047-y
Image Processing Software ImageJ [Online]. Available: https://imagej.nih.gov/ij/
Fitoussi, J., Meraghni, F., Jendli, Z., Hug, G., Baptiste, D.: Experimental methodology for high strain-rates tensile behaviour analysis of polymer matrix composites. Compos. Sci. Technol. 65(14), 2174–2188 (2005)
Jendli, Z., Fitoussi, J., Meraghni, F., Baptiste, D.: Anisotropic strain rate effects on the fibre–matrix interface decohesion in sheet moulding compound composites. Compos. Sci. Technol. 65(3–4), 387–393 (2005)
Fitoussi, J., Bocquet, M., Meraghni, F.: Effect of the matrix behavior on the damage of ethylene–propylene glass fiber reinforced composite subjected to high strain rate tension. Compos. B Eng. 45(1), 1181–1191 (2013)
Hug, G., Thevenet, P., Fitoussi, J., Baptiste, D.: Effect of the loading rate on mode I interlaminar fracture toughness of laminated composites. Eng. Fract. Mech. 73(16), 2456–2462 (2006)
ISO 527–2:2012, ISO, 2012. [Online]. Available: https://www.iso.org/standard/56046.html
ISO 527–1:2019, ISO, 2019. [Online]. Available: https://www.iso.org/standard/75824.html
ISO 18872:2007, ISO, 2007. [Online]. Available: https://www.iso.org/standard/38914.html
ISO 8256:2004, ISO, 2004. [Online]. Available: https://www.iso.org/standard/35900.html
Hibbit, H., Karlsson, B., Sorensen, P.: ABAQUS theory and user’s manual. Ed: Version. 2010
Shirinbayan, M., Rezaei-Khamseh, M., Nikooharf, M.H., Tcharkhtchi, A., Fitoussi, J.: Multi-scale analysis of mechanical properties and damage behavior of polypropylene composite (GF50-PP) plate at room and cryogenic temperatures. Compos. Struct. (2021). https://doi.org/10.1016/j.compstruct.2021.114713
Cox, B.N., Dadkhah, M.S., Morris, W.L., Flintoff, J.G.: Failure mechanisms of 3D woven composites in tension, compression, and bending. Acta Metall. Mater. 42(12), 3967–3984 (1994). https://doi.org/10.1016/0956-7151(94)90174-0
Author information
Authors and Affiliations
Contributions
Mohammadali Shirinbayan, Khaled Benfriha, Achraf Kallel, Zouhaier Jendli, Joseph Fitoussi: construct the idea. Mohammadali Shirinbayan, Mohammad Hossein Nikooharf, Khaled Benfriha, Achraf Kallel, Navideh Abbasnezhad, Zouhaier Jendli, Joseph Fitoussi: analyzed results, draft manuscript preparation, and wrote the paper. Mohammadali Shirinbayan, Mohammad Hossein Nikooharf, Khaled Benfriha, Achraf Kallel, Navideh Abbasnezhad, Zouhaier Jendli: corrected the English and the paper format.
Corresponding author
Ethics declarations
Consent to Participate
Not applicable.
Consent to Publish
Not applicable.
Conflict of Interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shirinbayan, M., Abbasnezhad, N., Nikooharf, M.H. et al. Manufacturing Process Effect on the Mechanical Properties of Glass Fiber/Polypropylene Composite Under High Strain Rate Loading: Woven (W-GF-PP) and Compressed GF50-PP. Appl Compos Mater 30, 1717–1736 (2023). https://doi.org/10.1007/s10443-023-10143-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10443-023-10143-7