Skip to main content
Log in

Low-Velocity Impact and Residual Compression Performance of Carbon Fiber Reinforced Composite Stiffened Plates

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this work, compression tests after impact and numerical simulation are combined to study bearing capacity and failure mode of carbon fiber reinforced composite grid plates with reinforcing stiffeners after being impacted at different positions. The mechanism of impact damage formation of composite stiffened plates and the damage propagation and extension process under compressive load are analysed. The results show that when there is no stiffener below the impact position, the main impact failure modes are fibre fracture and internal delamination of the skin, which have little effect on the bearing capacity of the structure; when the impact position is above the stiffener, the primary failure mode is the stiffener’s debonding from the skin, which will lower the remaining bearing capacity of the structure severely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Aamir, M., Tolouei-Rad, M., Giasin, K., Nosrati, A.: Recent advances in drilling of carbon fiber-reinforced polymers for aerospace applications: A review. J. Adv. Manuf. Technol. 105(5), 2289–2308 (2019)

    Google Scholar 

  2. Shahgholian-Ghahfarokhi, D., Aghaei-Ruzbahani, M., Rahimi, G.: Vibration correlation technique for the buckling load prediction of composite sandwich plates with iso-grid cores. Thin-Walled Struct. 142, 392–404 (2019)

    Article  Google Scholar 

  3. Goh, G.D., Dikshit, V., Nagalingam, A.P., Goh, G.L., Agarwala, S., Sing, S.L., Wei, J., Yeong, W.Y.: Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater. Des. 137, 79–89 (2018)

    Article  CAS  Google Scholar 

  4. Wang, B., Hu, J., Li, Y., Yao, Y., Wang, S., Ma, L.: Mechanical properties and failure behavior of the sandwich structures with carbon fiber-reinforced x-type lattice truss core. Compos. Struct. 185, 619–633 (2018)

    Article  Google Scholar 

  5. Zhu, C., Zhu, P., Liu, Z., Tao, W.: Numerical investigation of fiber random distribution on the mechanical properties of yarn in-plain woven carbon fiber-reinforced composite based on a new perturbation algorithm. J. Compos. Mater. 52(6), 755–771 (2018)

    Article  Google Scholar 

  6. Barile, C., Casavola, C., De Cillis, F.: Mechanical comparison of new composite materials for aerospace applications. Compos. B Eng. 162, 122–128 (2019)

    Article  CAS  Google Scholar 

  7. De Rosa, I.M., Sarasini, F., Sarto, M.S., Tamburrano, A.: Emc impact of advanced carbon fiber/carbon nanotube reinforced composites for next-generation aerospace applications. IEEE Trans. Electromagn. Compat. 50(3), 556–563 (2008)

    Article  Google Scholar 

  8. Davis, D.C., Wilkerson, J.W., Zhu, J., Hadjiev, V.G.: A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes. Compos. Sci. Technol. 71(8), 1089–1097 (2011)

    Article  CAS  Google Scholar 

  9. Barile, C., Casavola, C., De Cillis, F.: Mechanical comparison of new composite materials for aerospace applications. Compos. B Eng. 162, 122–128 (2019)

    Article  CAS  Google Scholar 

  10. Sharif-Khodaei, Z., Ghajari, M., Aliabadi, M.: Determination of impact location on composite stiffened panels. Smart Mater. Struct. 21(10), 105026 (2012)

  11. Zhang, W., Deng, X., Sui, G., Yang, X.: Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites. Carbon 145, 629–639 (2019)

    Article  CAS  Google Scholar 

  12. Olsson, R.: Low-and medium-velocity impact as a cause of failure in polymer matrix composites. In: Failure Mechanisms in Polymer Matrix Composites, pp. 53–78. Elsevier, ??? (2012)

  13. Hosseinzadeh, R., Shokrieh, M.M., Lessard, L.: Damage behavior of fiber reinforced composite plates subjected to drop weight impacts. Compos. Sci. Technol. 66(1), 61–68 (2006)

    Article  CAS  Google Scholar 

  14. Abrate, S.: Impact on laminated composite materials (1991)

  15. Artero-Guerrero, J.A., Pernas-Sánchez, J., López-Puente, J., Varas, D.: Experimental study of the impactor mass effect on the low velocity impact of carbon/epoxy woven laminates. Compos. Struct. 133, 774–781 (2015)

    Article  Google Scholar 

  16. Malhotra, A., Guild, F., Pavier, M.: Edge impact to composite laminates: experiments and simulations. J. Mater. Sci. 43(20), 6661–6667 (2008)

    Article  CAS  Google Scholar 

  17. Ostré, B., Bouvet, C., Lachaud, F., Minot, C., Aboissière, J.: Edge impact damage scenario on stiffened composite structure. J. Compos. Mater. 49(13), 1599–1612 (2015)

    Article  Google Scholar 

  18. Mitrevski, T., Marshall, I.H., Thomson, R., Jones, R., Whittingham, B.: The effect of impactor shape on the impact response of composite laminates. Compos. Struct. 67(2), 139–148 (2005)

    Article  Google Scholar 

  19. Chakraborty, D.: Delamination of laminated fiber reinforced plastic composites under multiple cylindrical impact. Materials & design 28(4), 1142–1153 (2007)

    Article  CAS  Google Scholar 

  20. Hashin, Z.: Fatigue failure criteria for unidirectional fiber composites (1981)

  21. Yeh, H.-Y., Kim, C.H.: The yeh-stratton criterion for composite materials. J. Compos. Mater. 28(10), 926–939 (1994)

    Article  CAS  Google Scholar 

  22. Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56(4), 439–449 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Grant No. 11972140) is acknowledged for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi Yan or Lili Jiang.

Ethics declarations

Conflict of interest

Authors are required to disclose financial or non-financial interests that are directly or indirectly related to the work submitted for publication.All data generated or analysed during this study are included in this published article [and its supplementary information files

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Yan, S., Zhao, Y. et al. Low-Velocity Impact and Residual Compression Performance of Carbon Fiber Reinforced Composite Stiffened Plates. Appl Compos Mater 30, 1185–1206 (2023). https://doi.org/10.1007/s10443-023-10121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10121-z

Keywords

Navigation