Skip to main content
Log in

Relaxation Compression Resin Transfer Molding Under Magnetic Field: Modelling and Numerical Investigation

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The Relaxation Compression Resin Transfer Molding under Magnetic Field (RC-RTMMF) is a new variant of Liquid Composite Molding (LCM) family. This process uses a flexible magnetic membrane controlled by a magnetic field, in order to govern the relaxation and the compression stages by changing temporarily the permeability of the fabric preform. This new feature may reduce the filling time, and the injection equipment requirements, and at the same time the fiber volume fraction can be increased. In this study, a full mathematical modelling of the three major phases (relaxation-injection-compression) is conducted, followed by a numerical simulation, based on finite differences to investigate the effect of different processing scenarios on the processing time, resin pressure distribution and preform thickness uniformity. Investigation results show that scenario 1 can reduce the processing time by 48% and 55% compared to Resin Transfer Molding (RTM) and Vacuum Assisted Resin Infusion (VARI) with post infusion stage respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Han, S.H., Cho, E.J., Lee, H.C., et al.: Study on high-speed RTM to reduce the impregnation time of carbon/epoxy composites. Compos. Struct. 119, 50–58 (2015)

    Article  Google Scholar 

  2. Lionetto, F., Moscatello, A., Totaro, G., et al.: Experimental and numerical study of vacuum resin infusion of stiffened carbon fiber reinforced panels. Materials 13, 4800 (2020)

    Article  CAS  Google Scholar 

  3. Malheiro, J.M., Nunes, J.P.: Simulation of Vacuum Assisted Resin Infusion (VARI) Process for the Production of Composite Material Parts. In: Gaspar-Cunha, A., Periaux, J., Giannakoglou, K.C., et al. (eds.) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences [Internet], p. 319–340. Springer International Publishing, Cham. [cited 2021 Oct 1]. Available from: http://link.springer.com/10.1007/978-3-030-57422-2_21 (2021)

  4. McIlhagger, A., Archer, E., McIlhagger, R.: Manufacturing processes for composite materials and components for aerospace applications. Polymer Composites in the Aerospace Industry [Internet], p. 53–75. Elsevier. [cited 2021 Aug 18]. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780857095237000037 (2015)

  5. Hagnell, M.K., Kumaraswamy, S., Nyman, T., et al.: From aviation to automotive - a study on material selection and its implication on cost and weight efficient structural composite and sandwich designs. Heliyon 6, e03716 (2020)

    Article  CAS  Google Scholar 

  6. Simacek, P., Advani, S.G.: Modeling resin flow and fiber tow saturation induced by distribution media collapse in VARTM. Compos. Sci. Technol. 67, 2757–2769 (2007)

    Article  CAS  Google Scholar 

  7. Sozer, E.M., Simacek, P., Advani, S.G.: Resin transfer molding (RTM) in polymer matrix composites. Manufacturing Techniques for Polymer Matrix Composites (PMCs) [Internet], p. 245–309. Elsevier. [cited 2019 Aug 7]. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780857090676500092 (2012)

  8. Pham, X., Trochu, F.: Simulation of compression resin transfer molding to manufacture thin composite shells. Polym. Compos. 20, 436–459 (1999)

    Article  CAS  Google Scholar 

  9. Bhat, P., Merotte, J., Simacek, P., et al.: Process analysis of compression resin transfer molding. Compos. A Appl. Sci. Manuf. 40, 431–441 (2009)

    Article  Google Scholar 

  10. Harper, A.: RTM – past, present and future. Reinf. Plast. 53, 30–33 (2009)

    Article  Google Scholar 

  11. Hsiao, K.-T., Heider, D.: Vacuum assisted resin transfer molding (VARTM) in polymer matrix composites. Manufacturing Techniques for Polymer Matrix Composites (PMCs) [Internet], p. 310–347. Elsevier. [cited 2021 Oct 13]. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780857090676500109 (2012)

  12. Hindersmann, A.: Confusion about infusion: An overview of infusion processes. Compos. A Appl. Sci. Manuf. 126, 105583 (2019)

    Article  CAS  Google Scholar 

  13. Ouezgan, A., Adima, S., Maziri, A., et al.: An innovative methodology to design LCM Mold for aeronautic and automotive industries. International TRIZ Future Conference, p. 472–485. Springer (2019)

  14. Alms, J., Advani, S., Glancey, J.: Systems and Methods for Controlling Permeability in Vacuum Infusion Processes [Internet]. [cited 2022 Mar 21]. Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012027544 (2012)

  15. Ziegenbein, J.M., Colton, J.S.: Magnetic-clamping structures for the consolidation of composite laminates. Polym. Compos. 33, 951–960 (2012)

    Article  CAS  Google Scholar 

  16. Poorzeinolabedin, M., Parnas, K.L.: Flow correction control with electromagnetically induced preform resting process. Adv. Manuf. 7, 199–208 (2019)

    Article  CAS  Google Scholar 

  17. Alms, J.B., Advani, S.G., Glancey, J.L.: Liquid composite molding control methodologies using vacuum induced preform relaxation. Compos. A Appl. Sci. Manuf. 42, 57–65 (2011)

    Article  Google Scholar 

  18. Amirkhosravi, M., Pishvar, M., Altan, M.C.: Improving laminate quality in wet lay-up/vacuum bag processes by magnet assisted composite manufacturing (MACM). Compos. A Appl. Sci. Manuf. 98, 227–237 (2017)

    Article  CAS  Google Scholar 

  19. Amirkhosravi, M., Pishvar, M., Cengiz, A.M.: Fabricating high-quality VARTM laminates by magnetic consolidation: experiments and process model. Compos. A Appl. Sci. Manuf. 114, 398–406 (2018)

    Article  CAS  Google Scholar 

  20. Summerscales, J.: Resin infusion under flexible tooling (RIFT). Wiley Encyclopedia of composites, 1–11 (2011)

  21. Ouezgan, A., Adima, S., Maziri, A., et al.: Relaxation-compression resin transfer molding under magnetic field. KEM. 847, 81–86 (2020)

    Article  Google Scholar 

  22. Shojaei, A.: Numerical simulation of three-dimensional flow and analysis of filling process in compression resin transfer moulding. Compos. A Appl. Sci. Manuf. 37, 1434–1450 (2006)

    Article  Google Scholar 

  23. Mamoune, A., Saouab, A., Ouahbi, T., et al.: Simple models and optimization of compression resin transfer molding process. J. Reinf. Plast. Compos. 30, 1629–1648 (2011)

    Article  CAS  Google Scholar 

  24. Terzaghi, K.: Stress conditions for the failure of saturated concrete and rock. Proceedings-American Society for Testing and Materials. Amer Soc Testing Materials 100 Barr Harbor DR, W Conshohocken, PA 19428–2959; p. 777–792 (1945)

  25. Correia, N.C., Robitaille, F., Long, A.C., et al.: Analysis of the vacuum infusion moulding process: I. Analytical formulation. Compos. A: Appl. Sci. Manuf. 36, 1645–1656 (2005)

    Article  Google Scholar 

  26. Park, C.H., Saouab, A.: Analytical Modeling of composite molding by resin infusion with flexible tooling: VARI and RFI processes. J. Compos. Mater. 43, 1877–1900 (2009)

    Article  Google Scholar 

  27. Gutowski, T.G., Cai, Z., Bauer, S., et al.: Consolidation Experiments for laminate composites. J. Compos. Mater. 21, 650–669 (1987)

    Article  CAS  Google Scholar 

  28. Toll, S., Månson, J.-A.: An analysis of the compressibility of fibre assemblies. 6th Int Conf Fibre Reinf Compos, p. 1–10 (1994)

  29. Merotte, J., Simacek, P., Advani, S.G.: Flow analysis during compression of partially impregnated fiber preform under controlled force. Compos. Sci. Technol. 70, 725–733 (2010)

    Article  CAS  Google Scholar 

  30. Gupta, A., Kelly, P.A., Bickerton, S., et al.: Simulating the effect of temperature elevation on clamping force requirements during rigid-tool liquid composite moulding processes. Compos. A Appl. Sci. Manuf. 43, 2221–2229 (2012)

    Article  CAS  Google Scholar 

  31. Carman, P.C.: Fluid flow through granular beds. Chem. Eng. Res. Des. 75, S32–S48 (1997)

    Article  Google Scholar 

  32. Advani, S., Sozer, E., Mishnaevsky, L.: Process modeling in composites manufacturing. Appl. Mech. Rev. 56, B69–B70 (2003)

    Article  Google Scholar 

  33. Chang, C.-Y.: Numerical simulation of double-bag progressive compression method of resin delivery in liquid composite moulding. Plast. Rubber Compos. 48, 422–431 (2019)

    Article  CAS  Google Scholar 

  34. Achim, V., Ruiz, E.: Guiding selection for reduced process development time in RTM. Int J Mater Form. 3, 1277–1286 (2010)

    Article  Google Scholar 

  35. Vogel, O., Ulm, J.: Theory of proportional solenoids and magnetic force calculation using Comsol Multiphysics. Proceedings of the 2011 COMSOL Conference in Stuttgart. (2011)

  36. Bickerton, S., Buntain, M.J.: Modeling forces generated within rigid liquid composite molding tools. Part B: Numerical analysis. Compos. A: Appl. Sci. Manuf. 38, 1742–1754 (2007)

    Article  Google Scholar 

  37. Wang, Q., Li, T., Wang, B., et al.: Prediction of void growth and fiber volume fraction based on filament winding process mechanics. Compos. Struct. 246, 112432 (2020)

    Article  Google Scholar 

  38. Robitaille, F., Gauvin, R.: Compaction of textile reinforcements for composites manufacturing. I: Review of experimental results. Polym. Compos. 19, 198–216 (1998)

    Article  CAS  Google Scholar 

  39. Casulli, V., Cheng, R.T.: Semi-implicit finite difference methods for three-dimensional shallow water flow. Int. J. Numer. Meth. Fluids 15, 629–648 (1992)

    Article  Google Scholar 

  40. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ouezgan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouezgan, A., Adima, S., Maziri, A. et al. Relaxation Compression Resin Transfer Molding Under Magnetic Field: Modelling and Numerical Investigation. Appl Compos Mater 30, 677–704 (2023). https://doi.org/10.1007/s10443-023-10108-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10108-w

Keywords

Navigation