Skip to main content

Mechanical Analysis of Thick-walled Filament Wound Composite Pipes under Pure Torsion Load: Safety Zones and Optimal Design

Abstract

Thick-walled composite pipes made of fibre reinforced laminate are good candidates to replace traditional metal counterparts in fabricating such as drive shafts and drilling pipes. In this paper, the behaviour of thick-walled composite pipes subjected to torsion load is considered. The developed finite elements model and three-dimensional elasticity solution are presented to analyse the stress state of the pipe. The modified Tsai-Hill failure criterion is adapted for the stress analysis. The distribution of failure coefficients through the pipe thickness for different lay-ups is calculated. The parametric study is carried out to investigate the effects of fibre orientations, stacking sequences, layer thicknesses and the magnitudes of torsion on the pipe performance. The torsional response shows sensitivity to changes in winding angle. Although 45° reinforcement angle provides the highest torsional stiffness, the results indicate that it is not always the optimal solution due to the torsional strength. For multi-layered composite pipes, the optimum solution for the winding angle depends on the configurations and the stacking sequences. Finally, a new approach for pipe lay-up design to withstand the applied load is suggested, introducing ‘safety zones’, which represents reasonable fibre orientation to resist torsion load.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Guz, I.A., Menshykova, M., Paik, J.K.: Thick-walled composite tubes for offshore applications: an example of stress and failure analysis for filament-wound multi-layered pipes. Ships. Offshore. Struct. 12(3), 304–322 (2017)

    Article  Google Scholar 

  2. Cox, K., Menshykova, M., Menshykov, O., Guz, I.: Analysis of flexible composites for coiled tubing applications. Compos. Struct. 225, 111118 (2019)

    Article  Google Scholar 

  3. Xia, M., Takayanagi, H., Kemmochi, K.: Analysis of multi-layered filament-wound composite pipes under internal pressure. Compos. Struct. 53(4), 483–491 (2001)

    Article  Google Scholar 

  4. Bakaiyan, H., Hosseini, H., Ameri, E.: Analysis of multi-layered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations. Compos. Struct. 88(4), 532–541 (2009)

    Article  Google Scholar 

  5. Zhou, Y., Duan, M., Ma, J., Sun, G.: Theoretical analysis of reinforcement layers in bonded flexible marine hose under internal pressure. Eng. Struct. 168, 384–398 (2018)

    Article  Google Scholar 

  6. Xing, J., Geng, P., Yang, T.: Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure. Compos. Struct. 131, 868–877 (2015)

    Article  Google Scholar 

  7. Hastie, J.C., Guz, I.A., Kashtalyan, M.: Effects of thermal gradient on failure of a thermoplastic composite pipe (TCP) riser leg. Int. J. Press. Vessels. Pip. 172, 90–99 (2019)

    Article  CAS  Google Scholar 

  8. Hastie, J.C., Kashtalyan, M., Guz, I.A.: Failure analysis of thermoplastic composite pipe (TCP) under combined pressure, tension and thermal gradient for an offshore riser application. Int. J. Press. Vessels. Pip. 178, 103998 (2019)

    Article  Google Scholar 

  9. Hastie, J.C., Guz, I.A., Kashtalyan, M.: Numerical modelling of spoolable thermoplastic composite pipe (TCP) under combined bending and thermal load. Ships. Offshore. Struct. 17, 1975–1986 (2021)

    Article  Google Scholar 

  10. Hastie, J.C., Kashtalyan, M., Guz, I.A.: Analysis of filament-wound sandwich pipe under combined internal pressure and thermal load considering restrained and closed ends. Int. J. Press. Vessels. Pip. 191, 104350 (2021)

    Article  Google Scholar 

  11. Wicks, N., Wardle, B.L., Pafitis, D.: Horizontal cylinder-in-cylinder buckling under compression and torsion: Review and application to composite drill pipe. Int. J. Mech. Sci. 50(3), 538–549 (2008)

    Article  Google Scholar 

  12. Sebaey, T.A.: Design of oil and gas composite pipes for energy production. Energy. Procedia. 162, 146–155 (2019)

    Article  Google Scholar 

  13. Maziz, A., Rechak, S., Tarfaoui, M.: Comparative study of tubular composite structure subjected to internal pressure loading: Analytical and numerical investigation. J. Compos. Mater. 55(11), 1517–1533 (2021)

    Article  Google Scholar 

  14. Gu, Y., Zhou, H., Zhang, D., Liu, J., Wang, S.: Torsional mechanical properties and failure mechanism of braided carbon fiber reinforced composite tubes. J. Text. Res. 43(3), 95–102 (2022)

    Google Scholar 

  15. Martins, L., Bastian, F., Netto, T.: The effect of stress ratio on the fracture morphology of filament wound composite tubes. Mater. Des. 49, 471–484 (2013)

    Article  CAS  Google Scholar 

  16. Bisagni, C.: Experimental investigation of the collapse modes and energy absorption characteristics of composite tubes. Int. J. Crashworthiness. 14(4), 365–378 (2009)

    Article  Google Scholar 

  17. Özbek, Ö., Doğan, N.F., Bozkurt, Ö.Y.: An experimental investigation on lateral crushing response of glass/carbon intraply hybrid filament wound composite pipes. J. Braz. Soc. Mech. Sci. Eng. 42(7), 1–13 (2020)

    Article  Google Scholar 

  18. Gemi, L., Köroğlu, M.A., Ashour, A.: Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy ±55° filament wound pipes. Compos. Struct. 187, 157–168 (2018)

    Article  Google Scholar 

  19. Mutasher, S.: Prediction of the torsional strength of the hybrid aluminum/composite drive shaft. Mater. Des. 30(2), 215–220 (2009)

    Article  CAS  Google Scholar 

  20. Rasuo, B.: 3.11 on structural damping of composite aircraft structures. In: Beaumont, P.W.R., Zweben, C.H. (eds.) Comprehensive Composite Materials II, pp. 288–299. Elsevier, Oxford (2018)

    Chapter  Google Scholar 

  21. Enamul Hossain, M.: The current and future trends of composite materials: an experimental study. J. Compos. Mater. 45(20), 2133–2144 (2011)

    Article  Google Scholar 

  22. Leslie, J.C., Williamson, S., Long, R., Jean, J., Truong, L., Nuebert, H.: Composite drill pipe for extended-reach and deep water applications. Offshore Technology Conference (2002)

    Book  Google Scholar 

  23. Misri, S., Sapuan, S., Leman, Z., Ishak, M.: Torsional behaviour of filament wound kenaf yarn fibre reinforced unsaturated polyester composite hollow shafts. Mater. Des. 65, 953–960 (2015)

    Article  CAS  Google Scholar 

  24. Quaresimin, M., Carraro, P.: Damage initiation and evolution in glass/epoxy tubes subjected to combined tension–torsion fatigue loading. Int. J. Fatigue. 63, 25–35 (2014)

    Article  CAS  Google Scholar 

  25. He, Y., Vaz, M.A., Caire, M.: Stress and failure analyses of thermoplastic composite pipes subjected to torsion and thermomechanical loading. Mar. Struct. 79, 103024 (2021)

    Article  Google Scholar 

  26. Zhao, Y., Pang, S.: Stress-strain and failure analyses of composite pipe under torsion. ASME. J. Press. Vessel. Technol. 117(3), 273–278 (1995)

    Article  Google Scholar 

  27. Natsuki, T., Tsuda, H., Kemmochi, K.: Structural Analysis of Thick-Walled Filament-Wound Pipes. Journal of the Society of Materials Science, Japan 52(6), 606–611 (2003)

    Article  CAS  Google Scholar 

  28. Wang, T., Menshykov, O., Menshykova, M., Guz, I.: Modelling and optimal design of thick-walled composite pipes under in-service conditions. IOP. Conf. Ser. Mater. Sci. Eng. 936, 012046 (2020)

    Article  CAS  Google Scholar 

  29. Wang, T., Menshykova, M., Menshykov, O., Guz, I.: Failure analysis of multi-layered thick-walled composite pipes subjected to torsion loading. Mater. Sci. Forum. 1047, 25–30 (2021)

    Article  Google Scholar 

  30. Jonnalagadda, A., Sawant, A., Rohde, S., Sankar, B., Ifju, P.: An analytical model for composite tubes with bend–twist coupling. Compos. Struct. 131, 578–584 (2015)

    Article  Google Scholar 

  31. Herakovich, C.T.: Mechanics of fibrous composites. John Wiley & Sons Inc, New York (1998)

    Google Scholar 

  32. Kawai, M., Saito, S.: Off-axis strength differential effects in unidirectional carbon/epoxy laminates at different strain rates and predictions of associated failure envelopes. Compos. A. Appl. Sci. Manuf. 40(10), 1632–1649 (2009)

    Article  Google Scholar 

  33. Cagdas, I.U.: Optimal design of variable stiffness laminated composite truncated cones under lateral external pressure. Ocean. Eng. 145, 268–276 (2017)

    Article  Google Scholar 

  34. Xia, M., Kemmochi, K., Takayanagi, H.: Analysis of filament-wound fiber-reinforced sandwich pipe under combined internal pressure and thermomechanical loading. Compos. Struct. 51(3), 273–283 (2001)

    Article  Google Scholar 

  35. Arikan, H.: Failure analysis of (±55)3 filament wound composite pipes with an inclined surface crack under static internal pressure. Compos. Struct. 92(1), 182–187 (2010)

    Article  Google Scholar 

  36. Tarakçioğlu, N., Gemi, L., Yapici, A.: Fatigue failure behavior of glass/epoxy ±55 filament wound pipes under internal pressure. Compos. Sci. Technol. 65(3–4), 703–708 (2005)

    Article  Google Scholar 

  37. Betts, D., Sadeghian, P., Fam, A.: Investigation of the stress-strain constitutive behavior of±55° filament wound GFRP pipes in compression and tension. Compos. B. Eng. 172, 243–252 (2019)

    Article  CAS  Google Scholar 

  38. Tarakcioglu, N., Samanci, A., Arikan, H., Akdemir, A.: The fatigue behavior of (±55)3 filament wound GRP pipes with a surface crack under internal pressure. Compos. Struct. 80(2), 207–211 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Menshykova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors declare that all data supporting the findings of this study are available within the article.

Appendix

Appendix

$$\Psi \left(\mathrm{1,1}\right)=\left({\overline{C}}_{23}^{\left(1\right)}+\beta \left(1\right)\times {\overline{C}}_{33}^{\left(1\right)}\right)\times {r}_{1}^{\beta \left(1\right)-1}$$
$$\Psi \left(1,N+1\right)=\left({\overline{C}}_{23}^{\left(1\right)}-\beta \left(1\right)\times {\overline{C}}_{33}^{\left(1\right)}\right)\times {r}_{1}^{-\beta \left(1\right)-1}$$
$$\Psi \left(\mathrm{1,2}\times N+1\right)={\overline{C}}_{13}^{\left(1\right)}+{\alpha }_{1}^{\left(1\right)}\times \left({\overline{C}}_{23}^{\left(1\right)}+{\overline{C}}_{33}^{\left(1\right)}\right)$$
$$\Psi \left(\mathrm{1,2}\times N+2\right)=\left({\overline{C}}_{36}^{\left(1\right)}+{\alpha }_{2}^{\left(1\right)}\times \left({\overline{C}}_{23}^{\left(1\right)}+2\times {\overline{C}}_{33}^{\left(1\right)}\right)\right)*{r}_{1}$$
$$\Psi \left(N+\mathrm{1,1}\right)=\left({\overline{C}}_{23}^{\left(1\right)}+\beta \left(1\right)\times {\overline{C}}_{33}^{\left(1\right)}\right)\times {r}_{2}^{\beta \left(1\right)-1}$$
$$\Psi \left(N+\mathrm{1,2}\right)=-\left({\overline{C}}_{23}^{\left(2\right)}+\beta \left(2\right)\times {\overline{C}}_{33}^{\left(2\right)}\right)\times {r}_{2}^{\beta \left(2\right)-1}$$
$$\Psi \left(N+1,N+1\right)=\left({\overline{C}}_{23}^{\left(1\right)}-\beta \left(1\right)\times {\overline{C}}_{33}^{\left(1\right)}\right)\times {r}_{2}^{-\beta \left(1\right)-1}$$
$$\Psi \left(N+1,N+2\right)=-\left({\overline{C}}_{23}^{\left(2\right)}+\beta \left(2\right)\times {\overline{C}}_{33}^{\left(2\right)}\right)\times {r}_{2}^{-\beta \left(2\right)-1}$$
$$\Psi \left(N+\mathrm{1,2}\times N+1\right)={\overline{C}}_{13}^{\left(1\right)}-{\overline{C}}_{13}^{\left(2\right)}+{\alpha }_{1}^{\left(1\right)}\times \left({\overline{C}}_{23}^{\left(1\right)}+{\overline{C}}_{33}^{\left(1\right)}\right)-{\alpha }_{1}^{\left(2\right)}\times \left({\overline{C}}_{23}^{\left(2\right)}+{\overline{C}}_{33}^{\left(2\right)}\right)$$
$$\Psi \left(N+\mathrm{1,2}\times N+2\right)=\left({\overline{C}}_{36}^{\left(1\right)}-{\overline{C}}_{36}^{\left(2\right)}+{\alpha }_{2}^{\left(1\right)}\times \left({\overline{C}}_{23}^{\left(1\right)}+2\times {\overline{C}}_{33}^{\left(1\right)}\right)-{\alpha }_{2}^{\left(2\right)}\times \left({\overline{C}}_{23}^{\left(2\right)}+2\times {\overline{C}}_{33}^{\left(2\right)}\right)\right){\times r}_{2}$$
$$\Psi \left(2\times N,N\right)=\left({\overline{C}}_{23}^{\left(N\right)}+\beta \left(N\right)\times {\overline{C}}_{33}^{\left(N\right)}\right)\times {r}_{N+1}^{\beta \left(N\right)-1}$$
$$\Psi \left(2\times N,2\times N\right)=\left({\overline{C}}_{23}^{\left(N\right)}-\beta \left(N\right)\times {\overline{C}}_{33}^{\left(N\right)}\right)\times {r}_{N+1}^{-\beta \left(N\right)-1}$$
$$\Psi \left(2\times N,2\times N+1\right)={\overline{C}}_{13}^{\left(N\right)}+{\alpha }_{1}^{\left(N\right)}\times \left({\overline{C}}_{23}^{\left(N\right)}+{\overline{C}}_{33}^{\left(N\right)}\right)$$
$$\Psi \left(2\times N,2\times N+2\right)=\left({\overline{C}}_{36}^{\left(N\right)}+{\alpha }_{2}^{\left(N\right)}\times \left({\overline{C}}_{23}^{\left(N\right)}+2\times {\overline{C}}_{33}^{\left(N\right)}\right)\right)*{r}_{N+1}$$
$$\Psi \left(k,k-1\right)={r}_{k}^{\beta \left(k-1\right)}$$
$$\Psi \left(k,k\right)={-r}_{k}^{\beta \left(k\right)}$$
$$\Psi \left(k,k+N-1\right)={r}_{k}^{-\beta \left(k-1\right)}$$
$$\Psi \left(k,k+N\right)={-r}_{k}^{-\beta \left(k\right)}$$
$$\Psi \left(k,2\times N+1\right)=\left({\alpha }_{1}^{\left(k-1\right)}-{\alpha }_{1}^{\left(k\right)}\right)\times {r}_{k}$$
$$\Psi \left(k,2\times N+2\right)=\left({\alpha }_{2}^{\left(k-1\right)}-{\alpha }_{2}^{\left(k\right)}\right)\times {r}_{k}^{2}$$
$$\Psi \left(N+k-1,k-1\right)=\left({\overline{C}}_{23}^{\left(k-1\right)}+\beta \left(k-1\right)\times {\overline{C}}_{33}^{\left(k-1\right)}\right)\times {r}_{k}^{\beta \left(k-1\right)-1}$$
$$\Psi \left(N+k-1,k\right)=-\left({\overline{C}}_{23}^{\left(k\right)}+\beta \left(k\right)\times {\overline{C}}_{33}^{\left(k\right)}\right)\times {r}_{k}^{\beta \left(N\right)-1}$$
$$\Psi \left(N+k-1,N+k-1\right)=\left({\overline{C}}_{23}^{\left(k-1\right)}-\beta \left(k-1\right)\times {\overline{C}}_{33}^{\left(k-1\right)}\right)\times {r}_{k}^{-\beta \left(k-1\right)-1}$$
$$\Psi \left(N+k-1,N+k\right)=-\left({\overline{C}}_{23}^{\left(k\right)}-\beta \left(k\right)\times {\overline{C}}_{33}^{\left(k\right)}\right)\times {r}_{k}^{-\beta \left(N\right)-1}$$
$$\Psi \left(N+k-\mathrm{1,2}\times N+1\right)={\overline{C}}_{13}^{\left(k-1\right)}-{\overline{C}}_{13}^{\left(k\right)}+{\alpha }_{1}^{\left(k-1\right)}\times \left({\overline{C}}_{23}^{\left(k-1\right)}+{\overline{C}}_{33}^{\left(k-1\right)}\right)-{\alpha }_{1}^{\left(k\right)}\times \left({\overline{C}}_{23}^{\left(k\right)}+{\overline{C}}_{33}^{\left(k\right)}\right)$$
$$\Psi \left(N+k-\mathrm{1,2}\times N+2\right)=\left({\alpha }_{2}^{\left(k-1\right)}\times \left({\overline{C}}_{23}^{\left(k-1\right)}+2\times {\overline{C}}_{33}^{\left(k-1\right)}\right)-{\alpha }_{2}^{\left(k\right)}\times \left({\overline{C}}_{23}^{\left(k\right)}+2\times {\overline{C}}_{33}^{\left(k\right)}\right)+{\overline{C}}_{36}^{\left(k-1\right)}-{\overline{C}}_{36}^{\left(k\right)}\right)*{r}_{k}$$
$$\left(k=2\dots N\right)$$
$$\Psi \left(2\times N+1,k\right)=\frac{{\overline{C}}_{12}^{\left(k\right)}+\beta \left(k\right)\times {\overline{C}}_{13}^{\left(k\right)}}{1+\beta \left(k\right)}\times \left({r}_{k+1}^{\beta \left(k\right)+1}-{r}_{k}^{\beta \left(k\right)+1}\right)$$
$$\Psi \left(2\times N+1,N+k\right)=\frac{{\overline{C}}_{12}^{\left(k\right)}-\beta \left(k\right)\times {\overline{C}}_{13}^{\left(k\right)}}{1-\beta \left(k\right)}\times \left({r}_{k+1}^{-\beta \left(k\right)+1}-{r}_{k}^{-\beta \left(k\right)+1}\right)$$
$$\Psi \left(2\times N+2,k\right)=\frac{{\overline{C}}_{26}^{\left(k\right)}+\beta \left(k\right)\times {\overline{C}}_{36}^{\left(k\right)}}{2+\beta \left(k\right)}\times \left({r}_{k+1}^{\beta \left(k\right)+2}-{r}_{k}^{\beta \left(k\right)+2}\right)$$
$$\Psi \left(2\times N+2,N+k\right)=\frac{{\overline{C}}_{26}^{\left(k\right)}-\beta \left(k\right)\times {\overline{C}}_{36}^{\left(k\right)}}{2-\beta \left(k\right)}\times \left({r}_{k+1}^{-\beta \left(k\right)+2}-{r}_{k}^{-\beta \left(k\right)+2}\right)$$
$$\left(k=1\dots N\right)$$
$$\Psi \left(2\times N+\mathrm{1,2}\times N+1\right)=\sum_{1}^{N}\left({\overline{C}}_{11}^{\left(k\right)}+{\alpha }_{1}^{\left(k\right)}\times \left({\overline{C}}_{12}^{\left(k\right)}+{\overline{C}}_{13}^{\left(k\right)}\right)\right)\times \frac{{r}_{k+1}^{2}-{r}_{k}^{2}}{2}$$
$$\Psi \left(2\times N+\mathrm{1,2}\times N+2\right)=\sum_{1}^{N}\left({\overline{C}}_{16}^{\left(k\right)}+{\alpha }_{2}^{\left(k\right)}\times \left({\overline{C}}_{12}^{\left(k\right)}+2\times {\overline{C}}_{13}^{\left(k\right)}\right)\right)\times \frac{{r}_{k+1}^{3}-{r}_{k}^{3}}{3}$$
$$\Psi \left(2\times N+\mathrm{2,2}\times N+1\right)=\sum_{1}^{N}\left({\overline{C}}_{16}^{\left(k\right)}+{\alpha }_{1}^{\left(k\right)}\times \left({\overline{C}}_{26}^{\left(k\right)}+{\overline{C}}_{36}^{\left(k\right)}\right)\right)\times \frac{{r}_{k+1}^{3}-{r}_{k}^{3}}{3}$$
$$\Psi \left(2\times N+\mathrm{2,2}\times N+2\right)=\sum_{1}^{N}\left({\overline{C}}_{66}^{\left(k\right)}+{\alpha }_{2}^{\left(k\right)}\times \left({\overline{C}}_{26}^{\left(k\right)}+2\times {\overline{C}}_{36}^{\left(k\right)}\right)\right)\times \frac{{r}_{k+1}^{4}-{r}_{k}^{4}}{4}$$
$$\left(k=1\dots N\right)$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Menshykova, M., Menshykov, O. et al. Mechanical Analysis of Thick-walled Filament Wound Composite Pipes under Pure Torsion Load: Safety Zones and Optimal Design. Appl Compos Mater 30, 485–505 (2023). https://doi.org/10.1007/s10443-022-10088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10088-3

Keywords