Skip to main content
Log in

Nonlinear Effective Dielectric Properties of Barium Strontium Titanate Composites from 300MHz to 4GHz

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The nonlinear effective dielectric properties of barium strontium titanate (BST) composites at microwave frequencies are important for designing microwave phase shifters, tunable capacitors, and nonlinear transmission lines (NLTLs) for high-power microwave applications. Previous studies have reported the dielectric properties of these nonlinear materials in the linear regime at microwave frequencies or in the nonlinear regime at sub-microwave frequencies; however, a detailed assessment of the nonlinear permittivity of BST composites at microwave frequencies is lacking. In this study, we used two bias tees and a DC power supply to apply a volume-averaged bias field from 0 to 1.43\(\times {10}^{6}\) V/m to composites located in a coaxial air line to measure the nonlinear effective permittivity of BST composites with volume fractions up to 30% BST (Ba2/3Sr1/3TiO3) from 300MHz to 4GHz. The measured permittivity exhibits negligible nonlinearity and loss over these frequencies and volume fractions at the highest applied bias field. A nonlinear effective medium theory based on the Maxwell-Garnett law suggests that achieving strong nonlinearity for composites containing volume fractions from 20 to 50% of BST requires a bias field above \({10}^{7}\) V/m. Thus, while including BST in NLTL composites may be important for increasing dielectric breakdown strength, it may only enhance nonlinear permittivity for strong bias fields and high volume fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • 1. Nadaud, K., Borderon, C., Renoud, R., Ghalem, A., Crunteanu, A., Huitema, L., Dumas-Bouchiat, F., Marchet, P., Champeaux, C., Gundel, H.W.: Effect of the incident power on permittivity, losses and tunability of BaSrTiO3 thin films in the microwave frequency range. Appl. Phys. Lett. 110, 212902 (2017). https://doi.org/10.1063/1.4984089

  • 2. Ghalem, A., Rammal, M., Huitema, L., Crunteanu, A., Madrangeas, V., Dutheil, P., Dumas-Bouchiat, F., Marchet, P., Champeaux, C., Trupina, L., Nedelcu, L., Banciu, M.G.: Ultra-high tunability of Ba(2/3)Sr(1/3)TiO3-based capacitors under low electric fields. IEEE Microw. Wirel. Components Lett. 26, 504–506 (2016). https://doi.org/10.1109/LMWC.2016.2576455

  • 3. DePaolis, R., Payan, S., Maglione, M., Guegan, G., Coccetti, F.: High-tunability and high-Q-factor integrated ferroelectric circuits up to millimeter waves. IEEE Trans. Microw. Theory Tech. 63, 2570–2578 (2015). https://doi.org/10.1109/TMTT.2015.2441073

  • 4. Selmi, F., Hughes, R., Varadan, V.V.K., Varadan, V.V.K.: Tunable ceramic phase shifters and their applications. 1916, 180–188 (1993). https://doi.org/10.1117/12.148472

  • 5. Liu, Y., Acikeia, B., Nagra, A.S., Taylor, T.R., Hansen, P.J., Speck, J.S., York, R.A.: Distributed phase shifters using (Ba,Sr)TiO3 thin films on sapphire and glass substrates. In: Integr. Ferroelectr. pp. 313–320 (2001)

  • 6. Galt, D., Price, J.C., Beall, J.A., Ono, R.H.: Characterization of a tunable thin film microwave YBa2Cu3O7 − x/SrTiO3 coplanar capacitor. Appl. Phys. Lett. 63, 3078 (1998). https://doi.org/10.1063/1.110238

  • 7. Nguyen, H.V., Benzerga, R., Borderon, C., Delaveaud, C., Sharaiha, A., Renoud, R., Paven, C.Le, Pavy, S., Nadaud, K., Gundel, H.W.: Miniaturized and reconfigurable notch antenna based on a BST ferroelectric thin film. Mater. Res. Bull. 67, 255–260 (2015). https://doi.org/10.1016/j.materresbull.2015.02.034

  • 8. Sherman, V.O., Tagantsev, A.K., Setter, N., Iddles, D., Price, T.: Ferroelectric-dielectric tunable composites. J. Appl. Phys. 99, 074104 (2006). https://doi.org/10.1063/1.2186004

  • 9. Ponchel, F., Legier, J.F., Soyer, C., Ŕmiens, D., Midy, J., Lasri, T., Gúguan, G.: Rigorous extraction tunability of Si-integrated Ba0.3Sr0.7TiO3 thin film up to 60 GHz. Appl. Phys. Lett. 96, 252906 (2010). https://doi.org/10.1063/1.3454772

  • 10. Fairbanks, A.J., Darr, A.M., Garner, A.L.: A review of nonlinear transmission line system design. IEEE Access. 8, 148606–148621 (2020). https://doi.org/10.1109/ACCESS.2020.3015715

  • 11. Liou, J.W., Chiou, B.S.: Dielectric tunability of barium strontium titanate/silicone-rubber composite. J. Phys. Condens. Matter. 10, 2773–2786 (1998). https://doi.org/10.1088/0953-8984/10/12/015

  • 12. Strumpler, R., Rhyner, J., Greuter, F., Kluge-Weiss, P.: Nonlinear dielectric composites. Smart Mater. Struct. 4, 215–222 (1995). https://doi.org/10.1088/0964-1726/4/3/009

  • 13. Wang, Z., Nelson, J.K., Hillborg, H., Zhao, S., Schadler, L.S.: Dielectric constant and breakdown strength of polymer composites with high aspect ratio fillers studied by finite element models. Compos. Sci. Technol. 76, 29–36 (2013). https://doi.org/10.1016/j.compscitech.2012.12.014

  • 14. Wang, Z., Nelson, J.K., Miao, J., Linhardt, R.J., Schadler, L.S., Hillborg, H., Zhao, S.: Effect of high aspect ratio filler on dielectric properties of polymer composites: a study on barium titanate fibers and graphene platelets. IEEE Trans. Dielectr. Electr. Insul. 19, 960–967 (2012). https://doi.org/10.1109/TDEI.2012.6215100

  • 15. Hu, T., Juuti, J., Jantunen, H.: RF properties of BST–PPS composites. J. Eur. Ceram. Soc. 27, 2923–2926 (2007). https://doi.org/10.1016/J.JEURCERAMSOC.2006.11.027

  • 16. Sambyal, P., Singh, A.P., Verma, M., Farukh, M., Singh, B.P., Dhawan, S.K.: Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption. RSC Adv. 4, 12614–12624 (2014). https://doi.org/10.1039/C3RA46479B

  • 17. Pandya, R.J., Joshi, U.S., Caltun, O.F.: Microstructural and electrical properties of barium strontium titanate and nickel zinc ferrite composites. Procedia Mater. Sci. 10, 168–175 (2015). https://doi.org/10.1016/J.MSPRO.2015.06.038

  • 18. Huang, X., Sun, B., Zhu, Y., Li, S., Jiang, P.: High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 100, 187–225 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.003

  • 19. Wang, N., Cotton, I., Robertson, J., Follmann, S., Evans, K., Newcombe, D.: Partial discharge control in a power electronic module using high permittivity non-linear dielectrics. IEEE Trans. Dielectr. Electr. Insul. 17, 1319–1326 (2010). https://doi.org/10.1109/TDEI.2010.5539704

  • 20. Robertson, J., Varlow, B.R.: Non-linear ferroelectric composite dielectric materials. IEEE Trans. Dielectr. Electr. Insul. 12, 779–790 (2005). https://doi.org/10.1109/TDEI.2005.1511103

  • 21. Guo, J., Wang, X., Jia, Z., Wang, J., Chen, C.: Nonlinear electrical properties and field dependency of BST and nano-ZnO-doped silicone rubber composites. Molecules. 23, 3153 (2018). https://doi.org/10.3390/molecules23123153

  • 22. Chou, X., Zhai, J., Yao, X.: Dielectric tunable properties of low dielectric constant Ba 0.5Sr0.5TiO3 - Mg2TiO4 microwave composite ceramics. Appl. Phys. Lett. 91, 1–4 (2007). https://doi.org/10.1063/1.2784202

  • 23. Zhang, J., Zhai, J., Jiang, H., Yao, X., Haitao, J., Jiwei, Z., Jiang, H., Xi, Y.: Dielectric tunable properties of BaTi4O9-doped Ba0.6Sr0.4TiO3 microwave composite ceramics. Artic. Sci. China Ser. E Technol. Sci. 52, 116–122 (2009). https://doi.org/10.1007/s11431-008-0333-0

  • 24. Fairbanks, A.J., Crawford, T.D., Garner, A.L.: Nonlinear transmission line implemented as a combined pulse forming line and high- power microwave source. Rev. Sci. Instrum. 92, 104702 (2021). https://doi.org/10.1063/5.0055916

  • 25. Fairbanks, A.J., Crawford, T.D., Vaughan, M.E., Garner, A.L.: Simulated and measured output from a composite nonlinear transmission line driven by a Blumlein pulse generator. IEEE Trans. Plasma Sci. 49, 3383–3391 (2021). https://doi.org/10.1109/TPS.2021.3114449

  • 26. Crawford, T.D., Fairbanks, A.J., Hernandez, J.A., Tallman, T.N., Garner, A.L.: Nonlinear permeability measurements for nickel zinc ferrite and nickel zinc ferrite/ barium strontium titanate composites from 1–4 GHz. IEEE Trans. Magn. 57, 6100810 (2021). https://doi.org/10.1109/TMAG.2021.3068820

  • 27. Fairbanks, A.J., Crawford, T.D., Hernandez, J.A., Mateja, J.D., Zhu, X., Tallman, T.N., Garner, A.L.: Electromagnetic measurements of composites containing barium strontium titanate or nickel zinc ferrite inclusions from 1–4 GHz. Compos. Sci. Technol. 210, 108798 (2021). https://doi.org/10.1016/j.compscitech.2021.108798

  • 28. Fairbanks, A.J., Crawford, T.D., Hernandez, J.A., Mateja, J.D., Zhu, X., Tallman, T.N., Garner, A.L.: Electromagnetic properties of multiphase composites containing barium strontium titanate and nickel zinc ferrite inclusions from 1–4 GHz. Compos. Sci. Technol. 211, 108826 (2021). https://doi.org/10.1016/j.compscitech.2021.108826

  • 29. Farcich, N.J., Salonen, J., Asbeck, P.M.: Single-length method used to determine the dielectric constant of polydimethylsiloxane. IEEE Trans. Microw. Theory Tech. 56, 2963–2971 (2008). https://doi.org/10.1109/TMTT.2008.2007182

  • 30. Trajkovikj, J., Zurcher, J.F., Skrivervik, A.K.: Soft and flexible antennas on permittivity adjustable PDMS substrates. LAPC 2012–2012 Loughbrgh. Antennas Propag. Conf. (2012). https://doi.org/10.1109/LAPC.2012.6402953

  • 31. Gale, B.K., Eddings, M.A., Sundberg, S.O., Hatch, A., Kim, J., Ho, T.: Low-cost MEMS technologies. In: Yogesh B. Gianchandani, Osamu Tabata, H.Z. (ed.) Comprehensive Microsystems. pp. 341–378. Elsevier (2008)

  • 32. Zhu, X., Fairbanks, A.J., Crawford, T.D., Garner, A.L.: Modelling effective electromagnetic properties of composites containing barium strontium titanate and/or nickel zinc ferrite inclusions from 1–4 GHz. Compos. Sci. Technol. 214, 108978 (2021). https://doi.org/10.1016/j.compscitech.2021.108978

  • 33. Pozar, D.M.: Microwave Engineering. John Wiley &Sons, Inc (2012)

  • 34. Bartley, P.G., Begley, S.B.: A new technique for the determination of the complex permittivity and permeability of materials. 2010 IEEE Int. Instrum. Meas. Technol. Conf. I2MTC 2010 - Proc. 54–57 (2010). https://doi.org/10.1109/IMTC.2010.5488184

  • 35. Sihvola, A.: Electromagnetic mixing formulas and applications. IEF (1999)

  • 36. Padurariu, L., Curecheriu, L., Buscaglia, V., Mitoseriu, L.: Field-dependent permittivity in nanostructured BaTiO3 ceramics: modeling and experimental verification. Phys. Rev. B. 85, 224111 (2012). https://doi.org/10.1103/PhysRevB.85.224111

  • 37. Johnson, K.M.: Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J. Appl. Phys. 33, 2826–2831 (1962). https://doi.org/10.1063/1.1702558

  • 38. Astafiev, K.F., Sherman, V.O., Tagantsev, A.K., Setter, N.: Can the addition of a dielectric improve the figure of merit of a tunable material? J. Eur. Ceram. Soc. 23, 2381–2386 (2003). https://doi.org/10.1016/S0955-2219(03)00139-0

  • 39. Myroshnychenko, V., Smirnov, S., Mulavarickal Jose, P.M., Brosseau, C., Förstner, J.: Nonlinear dielectric properties of random paraelectric-dielectric composites. Acta Mater. 203, 116432 (2021). https://doi.org/10.1016/j.actamat.2020.10.051

  • 40. Zhou, K., Boggs, S.A., Ramprasad, R., Aindow, M., Erkey, C., Alpay, S.P.: Dielectric response and tunability of a dielectric-paraelectric composite. Appl. Phys. Lett. 93, 102908 (2008). https://doi.org/10.1063/1.2982086

  • 41. Padurariu, L., Curecheriu, L.P., Mitoseriu, L.: Nonlinear dielectric properties of paraelectric-dielectric composites described by a 3D Finite Element Method based on Landau-Devonshire theory. Acta Mater. 103, 724–734 (2016). https://doi.org/10.1016/j.actamat.2015.11.008

  • 42. Garnett, J.C.M.: Colours in metal glasses and in metallic films. Proc. R. Soc. London. 73, 443–445 (1904). https://doi.org/10.1098/rsta.1904.0024

Download references

Acknowledgements

This work was supported by the Office of Naval Research under Grant N00014-18-1-2341. We thank Haoxuan Wang for his assistance when performing the high voltage measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen L. Garner.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Fairbanks, A.J., Crawford, T.D. et al. Nonlinear Effective Dielectric Properties of Barium Strontium Titanate Composites from 300MHz to 4GHz. Appl Compos Mater 30, 93–109 (2023). https://doi.org/10.1007/s10443-022-10065-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10065-w

Keywords

Navigation