Skip to main content

Mechanical Properties and Damage Behavior of Polypropylene Composite (GF50-PP) Plate Fabricated by Thermocompression Process Under High Strain Rate Loading at Room and Cryogenic Temperatures

Abstract

This paper concerns the coupling effect of strain rate and temperature on the damage mechanical properties of the long-glass-fiber-reinforced polypropylene (GF50-PP) composite produced by the thermocompression process. Composite plates of GF50-PP have been employed to study the effect of glass fiber distribution on the mechanical properties of the composites. To achieve this objective the tensile tests have been performed at strain rate range from quasi-static to 100 s−1 at two loading temperatures of 20 °C and -70 °C, while measuring the local deformation through a contactless technique using a high-speed camera. High strain rate tensile tests findings showed that GF50-PP behavior is strongly strain-rate dependent. For instance, the stress damage threshold for three fiber orientations of 0°, 45°, and 90° to the Mold Flow Direction (MFD) was increased, when the strain rate varies from quasi-static (0.001 s−1) to 100 s−1 at two loading temperatures of 20 °C and -70 °C. The experimental methodology was coupled to microscopic observations using SEM to study the damage mechanisms of GF50-PP. The analysis confirms that there are three damage mechanisms: fiber-matrix interface debonding, matrix breakage, and pseudo-delamination between neighboring bundles of fibers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., Sivakugan, N.: Use of macro plastic fibres in concrete: A review. Constr. Build. Mater. 93, 180–188 (2015). https://doi.org/10.1016/j.conbuildmat.2015.05.105

    Article  Google Scholar 

  2. Cao, S., Yilmaz, E., Song, W.: Fiber type effect on strength, toughness and microstructure of early age cemented tailings backfill. Constr. Build. Mater. 223, 44–54 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.221

    Article  CAS  Google Scholar 

  3. Xue, G., Yilmaz, E., Song, W., Yilmaz, E.: Influence of fiber reinforcement on mechanical behavior and microstructural properties of cemented tailings backfill. Constr. Build. Mater. 213, 275–285 (2019). https://doi.org/10.1016/j.conbuildmat.2019.04.080

    Article  CAS  Google Scholar 

  4. Liu, J., Jia, Y., Wang, J.: Experimental study on mechanical and durability properties of glass and polypropylene fiber reinforced concrete. Fibers and Polymers 20(9), 1900–1908 (2019). https://doi.org/10.1007/s12221-019-1028-9

    Article  CAS  Google Scholar 

  5. Xu, L., et al.: Development of grid-reinforced carbon fiber mirrors using high-precision optical replication technology. Opt. Eng. 57(9), 093110 (2018)

    Article  Google Scholar 

  6. Al-darkazali, A., Çolak, P., Kadıoğlu, K., Günaydın, E., Inanç, I., Demircan, Ö.: Mechanical properties of thermoplastic and thermoset composites reinforced with 3d biaxial warp-knitted fabrics. Appl. Compos. Mater. 25(4), 939–951 (2018)

    Article  CAS  Google Scholar 

  7. Asenjan, M.S., Sabet, S.A.R., Nekoomanesh, M.: Mechanical and high velocity impact performance of a hybrid long carbon/glass fiber/polypropylene thermoplastic composite. Iran. Polym. J. 29(4), 301–307 (2020)

    Article  CAS  Google Scholar 

  8. Gabr, M.H., Okumura, W., Ueda, H., Kuriyama, W., Uzawa, K., Kimpara, I.: Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay. Compos. B Eng. 69, 94–100 (2015)

    Article  CAS  Google Scholar 

  9. Hassani, F., Martin, P.J., Falzo, B.G.: Progressive failure in interply hybrid composites of self-reinforced polypropylene and glass fibre. Polymer 122411 (2020)

  10. Nikooharf, M.H., Rezaei‐Khamseh, M., Shirinbayan, M., Fitoussi, J., Tcharkhtchi, A.: Comparison of the physicochemical, rheological, and mechanical properties of core and surface of polypropylene composite (GF50‐PP) plate fabricated by thermocompression process. Polym. Compos. (2021)

  11. Friedrich, K., Almajid, A.A.: Manufacturing aspects of advanced polymer composites for automotive applications. Appl. Compos. Mater. 20(2), 107–128 (2013)

    Article  CAS  Google Scholar 

  12. Huang, L., Wu, Q., Wang, Q., Wolcott, M.: Interfacial crystals morphology modification in cellulose fiber/polypropylene composite by mechanochemical method. Compos. A Appl. Sci. Manuf. 130, 105765 (2020)

    Article  CAS  Google Scholar 

  13. Gómez-Monterde, J., Sánchez-Soto, M., Maspoch, M.L.: Microcellular PP/GF composites: Morphological, mechanical and fracture characterization. Compos. A Appl. Sci. Manuf. 104, 1–13 (2018)

    Article  CAS  Google Scholar 

  14. Hamada, H., Fujihara, K., Harada, A.: The influence of sizing conditions on bending properties of continuous glass fiber reinforced polypropylene composites. Compos. A Appl. Sci. Manuf. 31(9), 979–990 (2000)

    Article  Google Scholar 

  15. Formisano, A., Papa, I., Lopresto, V., Langella, A.: Influence of the manufacturing technology on impact and flexural properties of GF/PP commingled twill fabric laminates. J. Mater. Process. Technol. 274, 116275 (2019)

    Article  CAS  Google Scholar 

  16. Díez-Pascual, A.M., Naffakh, M.: Polypropylene/glass fiber hierarchical composites incorporating inorganic fullerene-like nanoparticles for advanced technological applications. ACS Appl. Mater. Interfaces. 5(19), 9691–9700 (2013)

    Article  CAS  Google Scholar 

  17. Gu, S., Liu, H., Li, X., Mercier, C., Li, Y.: Interfacial designing of PP/GF composites by binary incorporation of MAH-g-PP and lithium bis (trifloromethanesulfonyl) imide: towards high strength composites with excellent antistatic performance. Compos. Sci. Technol. 156, 247–253 (2018)

    Article  CAS  Google Scholar 

  18. Kim, D.-H., Kang, S.-Y., Kim, H.-J., Kim, H.-S.: Strain rate dependent mechanical behavior of glass fiber reinforced polypropylene composites and its effect on the performance of automotive bumper beam structure. Compos. B Eng. 166, 483–496 (2019)

    Article  CAS  Google Scholar 

  19. Kiss, P., Stadlbauer, W., Burgstaller, C., Archodoulaki, V.-M.: Development of high-performance glass fibre-polypropylene composite laminates: Effect of fibre sizing type and coupling agent concentration on mechanical properties. Compos. A Appl. Sci. Manuf. 138, 106056 (2020)

    Article  CAS  Google Scholar 

  20. Liu, Y., Deng, C.-L., Zhao, J., Wang, J.-S., Chen, L., Wang, Y.-Z.: An efficiently halogen-free flame-retardant long-glass-fiber-reinforced polypropylene system. Polym. Degrad. Stab. 96(3), 363–370 (2011)

    Article  CAS  Google Scholar 

  21. Yudhanto, A., et al.: Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates. Polym. Testing 51, 93–100 (2016)

    Article  CAS  Google Scholar 

  22. Arikan, V., Sayman, O.: Comparative study on repeated impact response of E-glass fiber reinforced polypropylene & epoxy matrix composites. Compos. B Eng. 83, 1–6 (2015)

    Article  CAS  Google Scholar 

  23. Chen, H., Wang, J., Ni, A., Ding, A., Sun, Z., Han, X.: Effect of novel intumescent flame retardant on mechanical and flame retardant properties of continuous glass fibre reinforced polypropylene composites. Compos. Struct. 203, 894–902 (2018)

    Article  Google Scholar 

  24. Duan, S., Zhang, Z., Wei, K., Wang, F., Han, X.: Theoretical study and physical tests of circular hole-edge stress concentration in long glass fiber reinforced polypropylene composite. Compos. Struct. 236, 111884 (2020)

    Article  Google Scholar 

  25. Kossentini Kallel, T., Taktak, R., Guermazi, N., Mnif, N.: Mechanical and structural properties of glass fiber‐reinforced polypropylene (PPGF) composites. Polym. Compos. 39(10), 3497–3508 (2018)

    Article  CAS  Google Scholar 

  26. Liu, L., Liu, Y., Han, Y., Liu, Y., Wang, Q.: Interfacial charring method to overcome the wicking action in glass fiber-reinforced polypropylene composite. Compos. Sci. Technol. 121, 9–15 (2015)

    Article  CAS  Google Scholar 

  27. Varvani-Farahani, A.: Composite materials: characterization, fabrication and application-research challenges and directions. Appl. Compos. Mater. 17(2), 63–67 (2010)

    Article  Google Scholar 

  28. Wang, Y., Cheng, L., Cui, X., Guo, W.: Crystallization behavior and properties of glass fiber reinforced polypropylene composites. Polymers 11(7), 1198 (2019)

    Article  CAS  Google Scholar 

  29. Courtney, T.H.: Mechanical behavior of materials. Waveland Press (2005)

    Google Scholar 

  30. Krutyeva, M., et al.: Effect of nanoconfinement on polymer dynamics: surface layers and interphases. Phys. Rev. Lett. 110(10), 108303 (2013)

    Article  CAS  Google Scholar 

  31. Chen, Y., Wen, X., Nie, M., Wang, Q.: Preparation of polypropylene/glass fiber composite with high performance through interfacial crystallization. J. Vinyl Add. Tech. 23(4), 284–289 (2017)

    Article  CAS  Google Scholar 

  32. Karger-Kocsis, J., Czigány, T.: Interfacial effects on the dynamic mechanical behavior of weft-knitted glass fiber fabric-reinforced polypropylene composites produced of commingled yarns. Tensile and flexural response. Appl. Compos. Mater. 4(4), 209–218 (1997)

    CAS  Google Scholar 

  33. Nobelen, M., Hayes, B.S., Seferis, J.C.: Cryogenic microcracking of rubber toughened composites. Polym. Compos. 24(6), 723–730 (2003)

    Article  CAS  Google Scholar 

  34. Kalia, S., Fu, S.-Y.: Polymers at cryogenic temperatures. Springer (2013)

  35. Petitpas, G., Aceves, S.: Hydrogen storage in pressure vessels: liquid, cryogenic, and compressed gas. In: Klebanoff, L.E. (ed.) Hydrogen Storage Technology: Materials and Applications, pp. 91–107. CRC Press, Taylor & Francis (2012)

  36. Yan, X., Uawongsuwan, P., Murakami, M., Imajo, A., Yang, Y., Hamada, H.: Tensile properties of glass fiber/carbon fiber reinforced polypropylene hybrid composites fabricated by direct fiber feeding injection molding process. In ASME International Mechanical Engineering Congress and Exposition, vol. 50527, p. V002T02A045. American Society of Mechanical Engineers (2016)

  37. Yan, X., Yang, Y., Hamada, H.: Tensile properties of glass fiber reinforced polypropylene composite and its carbon fiber hybrid composite fabricated by direct fiber feeding injection molding process. Polym. Compos. 39(10), 3564–3574 (2018)

    Article  CAS  Google Scholar 

  38. Yu, L., Cui, Z.: Loading rate and temperature dependence of flexural behaviour of GFPP fabricated by Injection Molding Method

  39. Yu, L., Ma, Y.: Loading rate and temperature dependence of flexural behavior in injection-molded glass fiber reinforced polypropylene composites. Compos. B Eng. 161, 285–299 (2019)

    Article  CAS  Google Scholar 

  40. Kim, D.-J., Yu, M.-H., Lim, J., Nam, B., Kim, H.-S.: Prediction of the mechanical behavior of fiber-reinforced composite structure considering its shear angle distribution generated during thermo-compression molding process. Compos. Struct. 220, 441–450 (2019)

    Article  Google Scholar 

  41. Kuhn, C.: Analysis and prediction of fiber matrix separation during compression molding of fiber reinforced plastics. (2018)

  42. Antony, S., Cherouat, A., Montay, G.: Experimental investigation of the temperature effect on the mechanical properties of hemp woven fabrics reinforced polymer. Appl. Mech. 2(2), 239–256 (2021)

    Article  Google Scholar 

  43. Mulle, M., et al.: Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings. Compos. Sci. Technol. 123, 143–150 (2016)

    Article  CAS  Google Scholar 

  44. Russo, P., Simeoli, G., Sorrentino, L., Iannace, S.: Effect of the compatibilizer content on the quasi-static and low velocity impact responses of glass woven fabric/polypropylene composites. Polym. Compos. 37(8), 2452–2459 (2016)

    Article  CAS  Google Scholar 

  45. Sorrentino, L., Simeoli, G., Iannace, S., Russo, P.: Mechanical performance optimization through interface strength gradation in PP/glass fibre reinforced composites. Compos. B Eng. 76, 201–208 (2015)

    Article  CAS  Google Scholar 

  46. Hoang, T.Q.T., Touchard, F.: Non-woven flax fibre reinforced polypropylene: Static and low velocity impact behaviour. Polym. Polym. Compos. 21(5), 287–298 (2013)

    CAS  Google Scholar 

  47. Lee, I.-G., Kim, D.-H., Jung, K.-H., Kim, H.-J., Kim, H.-S.: Effect of the cooling rate on the mechanical properties of glass fiber reinforced thermoplastic composites. Compos. Struct. 177, 28–37 (2017)

    Article  Google Scholar 

  48. Kumar, B.S., Balachandar, S.: A study on the influence of hot press forming process parameters on Flexural Property of Glass/PP Based Thermoplastic Composites Using Box-Behnken Experimental Design. Int. Sch. Res. Notices 2014, (2014)

  49. Lekube, B.M., Hermann, W., Burgstaller, C.: Partially compacted polypropylene glass fiber non-woven composite: Influence of processing, porosity and fiber length on mechanical properties and modeling. Compos. Part A: Appl. Sci. Manuf. 105939 (2020)

  50. Zhou, Y.G., Su, B., Turng, L.S.: Mechanical properties, fiber orientation, and length distribution of glass fiber-reinforced polypropylene parts: Influence of water-foaming technology. Polym. Compos. 39(12), 4386–4399 (2018)

    Article  CAS  Google Scholar 

  51. Dweib, M., Vahlund, C., Brádaigh, C.Ó.: Fibre structure and anisotropy of glass reinforced thermoplastics. Compos. A Appl. Sci. Manuf. 31(3), 235–244 (2000)

    Article  Google Scholar 

  52. Behrens, B.-A., Bohne, F., Lorenz, R., Arndt, H., Hübner, S., Micke-Camuz, M.: Numerical and experimental investigation of GMT compression molding and fiber displacement of UD-tape inserts. Procedia Manuf 47, 11–16 (2020). https://doi.org/10.1016/j.promfg.2020.04.109

    Article  Google Scholar 

  53. Park, C.H., Lee, W.I., Yoo, Y.E., Kim, E.G.: A study on fiber orientation in the compression molding of fiber reinforced polymer composite material. J. Mater. Process. Technol. 111(1–3), 233–239 (2001). https://doi.org/10.1016/s0924-0136(01)00523-4

    Article  Google Scholar 

  54. Londoño-Hurtado, A., Hernandez-Ortiz, J.P., Osswald, T.: Mechanism of fiber–matrix separation in ribbed compression molded parts. Polym. Compos. 28(4), 451–457 (2007)

    Article  CAS  Google Scholar 

  55. Notta-Cuvier, D., Nciri, M., Lauro, F., Chaari, F., Zouari, B., Maalej, Y.: A pragmatic approach for modelling the viscoelastic-viscoplastic behaviour of short-fibre reinforced thermoplastics coupled with anisotropic damage. Appl. Compos. Mater. 28(2), 341–368 (2021)

    Article  CAS  Google Scholar 

  56. Shirinbayan, M., Fitoussi, J., Meraghni, F., Surowiec, B., Bocquet, M., Tcharkhtchi, A.: High strain rate visco-damageable behavior of Advanced Sheet Molding Compound (A-SMC) under tension. Compos. B Eng. 82, 30–41 (2015)

    Article  CAS  Google Scholar 

  57. Shirinbayan, M., Fitoussi, J., Bocquet, M., Meraghni, F., Surowiec, B., Tcharkhtchi, A.: Multi-scale experimental investigation of the viscous nature of damage in Advanced Sheet Molding Compound (A-SMC) submitted to high strain rates. Compos. B Eng. 115, 3–13 (2017)

    Article  Google Scholar 

  58. Shirinbayan, M., Fitoussi, J., Abbasnezhad, N., Meraghni, F., Surowiec, B., Tcharkhtchi, A.: Mechanical characterization of a Low Density Sheet Molding Compound (LD-SMC): Multi-scale damage analysis and strain rate effect. Compos. B Eng. 131, 8–20 (2017)

    Article  CAS  Google Scholar 

  59. Schladitz, K., et al.: Non-destructive characterization of fiber orientation in reinforced SMC as input for simulation based design. Compos. Struct. 160, 195–203 (2017). https://doi.org/10.1016/j.compstruct.2016.10.019

    Article  Google Scholar 

  60. Zhang, S., Liu, L., Liu, Y.: Generalized laws of Snell, Fresnel and energy balance for a charged planar interface between lossy media. J. Quant. Spectrosc. Radiat. Transfer 245, 106903 (2020)

    Article  CAS  Google Scholar 

  61. Xiao, X.: Dynamic tensile testing of plastic materials. Polym. Testing 27(2), 164–178 (2008)

    Article  CAS  Google Scholar 

  62. Fitoussi, J., Meraghni, F., Jendli, Z., Hug, G., Baptiste, D.: Experimental methodology for high strain-rates tensile behaviour analysis of polymer matrix composites. Compos. Sci. Technol. 65(14), 2174–2188 (2005)

    Article  CAS  Google Scholar 

  63. Shirinbayan, M., Rezaei-khamseh, M., Nikooharf, M.H., Tcharkhtchi, A., Fitoussi, J.: Multi-scale analysis of mechanical properties and damage behavior of polypropylene composite (GF50-PP) plate at room and cryogenic temperatures. Compos. Struct. 114713 (2021)

  64. Ghauch, Z.G., Aitharaju, V., Rodgers, W.R., Pasupuleti, P., Dereims, A., Ghanem, R.G.: Integrated stochastic analysis of fiber composites manufacturing using adapted polynomial chaos expansions. Compos. A Appl. Sci. Manuf. 118, 179–193 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadali Shirinbayan.

Ethics declarations

Ethical Approval

All procedures performed in studies were in accordance with the ethical standards of the institutional and/or national research committee.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitoussi, J., Nikooharf, M.H., Kallel, A. et al. Mechanical Properties and Damage Behavior of Polypropylene Composite (GF50-PP) Plate Fabricated by Thermocompression Process Under High Strain Rate Loading at Room and Cryogenic Temperatures. Appl Compos Mater 29, 1959–1979 (2022). https://doi.org/10.1007/s10443-022-10047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10047-y

Keywords