Skip to main content
Log in

Nanocrystalline Cellulose– and Graphene Oxide–reinforced Polyvinyl Alcohol Films: Synthesis, Characterization, and Origin of Beneficial Co-filling Effects

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The increased demand for durable yet flexible and stretchable membranes has inspired the investigation of polymer nanocomposite films, such as those based on polyvinyl alcohol (PVA). Nanocrystalline cellulose (NCC) and graphene oxide (GO) nanosheets, as well as hybrid nanofillers with different weight NCC/GO ratios were successfully prepared and characterized. Their synergistic effect in enhancing the properties of poly(vinyl alcohol) (PVA) nanocomposites was also investigated. Results show that at an optimal filler content, the UV shielding efficiency exceeds 90%. When used together, NCC and GO enhance the nanocomposite properties to a larger extent than when individually used, which is ascribed to the hydrogen bonding between NCC and GO and the resulting prevention of filler agglomeration in the polymer matrix. Consequently, PVA/NCC/GO films exhibit properties superior to those of PVA/NCC and PVA/GO films. Owing to this synergistic property enhancement, the film with the optimal NCC to GO ratio (PVA/3.0%NCC/3.0%GO) has an elongation at break close to that of pure PVA while exhibiting tensile strength and storage modulus exceeding those of pure PVA 2.56- and 2.05-fold, respectively, and featuring higher glass transition and melting temperatures. Thus, at the optimum content of NCC and GO, the synergistic effect between these fillers strongly influences film properties, which can be exploited in the development of multifunctional nanocomposites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Jose, J., Al-Harthi, M.A., AlMa’adeed, M.A., Dakua, J.B., De, S.K.: Effect of graphene loading on thermomechanical properties of poly(vinylalcohol)/starch blend. J. Appl. Polym. Sci. 132(16), 41827 (2015). https://doi.org/10.1002/app.41827

    Article  CAS  Google Scholar 

  2. Akindoyo, J.O., Beg, M.D.H., Ghazali, S.B., Islam, M.R., Mamun, A.A.: Preparation and characterization of poly(lactic acid)-based composites reinforced with poly dimethyl siloxane/ultrasound-treated oil palm empty fruit bunch. Polym. Plast. Technol. Eng. 54(13), 1321–1333 (2015). https://doi.org/10.1080/03602559.2015.1010219

    Article  CAS  Google Scholar 

  3. Akindoyo John, O., Hossen, B.M., D., Ghazali, S., Islam Muhammad, R.: The effects of wettability, shear strength, and Weibull characteristics of fiber-reinforced poly(lactic acid) composites, J. Polym. Eng. 36, 489–497 (2016). https://doi.org/10.1515/polyeng-2015-0215

  4. Beg, M.D.H., Islam, M.R., Mamun, A.A., Heim, H.-P., Feldmann, M., Akindoyo, J.O.: Characterization of polyamide 6.10 composites incorporated with microcrystalline cellulose fiber: effects of fiber loading and impact modifier. Adv. Polym. Technol. 37(8), 3412–3420 (2018). https://doi.org/10.1002/adv.22125

  5. Akindoyo, J.O., Beg, M.D.H., Ghazali, S., Alam, A.K.M.M., Heim, H.P., Feldmann, M.: Synergized poly(lactic acid)–hydroxyapatite composites: biocompatibility study. J. Appl. Polym. Sci. 136(15), 47400–47410 (2019). https://doi.org/10.1002/app.47400

    Article  CAS  Google Scholar 

  6. Prabhu, R., Jeevananda, T., Reddy, K.R., Raghu, A.V.: Polyaniline-fly ash nanocomposites synthesized via emulsion polymerization: Physicochemical, thermal and dielectric properties. Mater. Sci. Energ. Tech. 4, 107–112 (2021). https://doi.org/10.1016/j.mset.2021.02.001

    Article  CAS  Google Scholar 

  7. Prabhu, R., Roopashree, B., Jeevananda, T., Rao, S., Reddy, K.R., Raghu, A.V.: Synthesis and corrosion resistance properties of novel conjugated polymer-Cu2Cl4L3 composites. Mater. Sci. Energ. Tech. 4, 92–99 (2021). https://doi.org/10.1016/j.mset.2021.01.001

    Article  CAS  Google Scholar 

  8. Stevens, E.S.: Green Plastics: An Introduction to the New Science of Biodegradable Plastics. Princeton University Press: Princeton, N.J. (2002). https://doi.org/10.1021/ed079p1072.1

  9. Baker, M.I., Walsh, S.P., Schwartz, Z., Boyan, B.D.: A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. B Appl. Biomater. 100B(5), 1451–1457 (2012). https://doi.org/10.1002/jbm.b.32694

  10. Nasalapure, A.V., Chalannavar, R.J., Kasai, D.R., Reddy, K.R., Raghu, A.V.: Novel polymeric hydrogel composites: Synthesis, physicochemical, mechanical and biocompatible properties. Nano Ex. 2, 030003 (2021). https://doi.org/10.1088/2632-959X/ac11bf

    Article  Google Scholar 

  11. Reddy, K.R., Reddy, Ch. V., Babu, B., Ravindranadh, K., Naveen, S., Raghu, A.V.: Chapter 8 -Recent advances in layered clays_intercalated polymer nanohybrids: Synthesis strategies, properties, and their applications. Modified clay and zeolite nanocompos maters 197–218 (2019). https://doi.org/10.1016/B978-0-12-814617-0.00013-X

  12. Inamuddin, Sharma, G., Kumar, A., Lichtfouse, E., Asiri, A.M.: Nanophotocatalysis and Environmental Applications: materials and technology. pp.139–169. Springer, United Kingdom (2020). https://doi.org/10.1007/978-3-030-10609-6

  13. Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N., Dufresne, A.: Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur. Polym. J. 44(8), 2489–2498 (2008). https://doi.org/10.1016/j.eurpolymj.2008.05.024

    Article  CAS  Google Scholar 

  14. Olivier, C., Moreau, C., Bertoncini, P., Bizot, H., Chauvet, O., Cathala, B.: Cellulose nanocrystal-assisted dispersion of luminescent single-walled carbon nanotubes for layer-by-layer assembled hybrid thin films. Langmuir 28(34), 12463–12471 (2012). https://doi.org/10.1021/la302077a

    Article  CAS  Google Scholar 

  15. Xu, S., Yu, W., Yao, X., Zhang, Q., Fu, Q.: Nanocellulose-assisted dispersion of graphene to fabricate poly(vinyl alcohol)/graphene nanocomposite for humidity sensing. Compos. Sci. Technol. 131(16), 67–76 (2016). https://doi.org/10.1016/j.compscitech.2016.05.014

    Article  CAS  Google Scholar 

  16. Moeini, M., Barbaz Isfahani, R., Saber-Samandari, S., Aghdam, M.M.: Molecular dynamics simulations of the effect of temperature and strain rate on mechanical properties of graphene–epoxy nanocomposites. Mol. Simul. 46, 476–486 (2020). https://doi.org/10.1080/08927022.2020.1729983

    Article  CAS  Google Scholar 

  17. Irvin, C.W., Satam, C.C., Carson Meredith, J., Shofner, M.L.: Mechanical reinforcement and thermal properties of PVA tricomponent nanocomposites with chitin nanofibers and cellulose nanocrystals. Compos. Appl. Sci. Manuf. 116, 147–157 (2019). https://doi.org/10.1016/j.compositesa.2018.10.028

    Article  CAS  Google Scholar 

  18. Wang, Q., Li, G., Zhang, J., Huang, F., Lu, K., Wei, Q.: Preparation and characterization of nanofibers of polyvinyl alcohol / polyaniline-montmorillonite clay. J. Mol. Liq. 272, 1070–1076 (2018). https://doi.org/10.1016/j.molliq.2018.10.087

    Article  CAS  Google Scholar 

  19. Ching, Y.C., Rahman, A., Ching, K.Y., Sukiman, N.L., Chuan, C.H.: Preparation and characterization of polyvinyl alcohol- based composite reinforced with nanocellulose and nanosilica. BioResources. 10(2), 3364–3377 (2015). https://doi.org/10.15376/biores.10.2.3364-3377

  20. Chivrac, F., Pollet, E., Avérous, L.: Progress in nanobiocomposites based on polysaccharides and nanoclays. Mat. Sci. Eng. R. 67, 1–17 (2009). https://doi.org/10.1016/j.mser.2009.09.002

    Article  CAS  Google Scholar 

  21. Paul, D.R., Robeson, L.M.: Polymer nanotechnology: Nanocomposites. Polymer 49, 3178–3204 (2008). https://doi.org/10.1016/j.polymer.2008.04.017

    Article  CAS  Google Scholar 

  22. Jose, J.P., Thomas, S.: Alumina–clay nanoscale hybrid filler assembling incross-linked polyethylene based nanocomposites: Mechanics and thermalproperties. Phys. Chem. Chem. Phys. 16, 14730–14740 (2014). https://doi.org/10.1039/C4CP01532K

  23. Dhibar, S., Bhattacharya, P., Ghosh, D., Hatui, G., Das, C.K.: Graphene–single-walled carbon nanotubes–poly(3-methylthiophene) ternarynanocomposite for supercapacitor electrode materials. Ind. Eng. Chem. Res. 53, 13030–13045 (2014). https://doi.org/10.1021/ie501407k

    Article  CAS  Google Scholar 

  24. George, J., Kumar, R., Sajeevkumar, V. A., Ramana, K. V., Rajamanickam, R.,Abhishek, V., Nadanasabapathy, S., Siddaramaiah.: Hybrid HPMC nananocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr. Polym. 105, 285–292 (2014). https://doi.org/10.1016/j.carbpol.2014.01.057

  25. Tang, C., Chen, N., Zhang, Q., Wang, K., Fu, Q., Zhang, X.: Preparation andproperties of chitosan nanocomposites with nanofillers of differentdimensions. Polym. Degrad. Stab. 94, 124–131 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.09.008

    Article  CAS  Google Scholar 

  26. Wang, Y., Yu, J., Dai, W., Wang, D., Song, Y., Bai, H., Zhou, X., Li, C., Lin, C., Jiang, N.: Epoxy compositesfilled with one-dimensional SiC nanowires–two-dimensional graphenenanoplatelets hybrid nanofillers. RSC Adv. 4, 59409–59417 (2014). https://doi.org/10.1039/C4RA07878K

    Article  CAS  Google Scholar 

  27. Chen, Q., Liu, P., Sheng, C., Zhou, L., Duan, Y., Zhang, J.: Tunableself-assembly structure of graphene oxide/cellulose nanocrystal hybrid filmsfabricated by vacuum filtration technique. RSC Adv. 4, 39301–39304 (2014). https://doi.org/10.1039/C4RA05921B

    Article  CAS  Google Scholar 

  28. El Achaby, M., Arrakhiz, F.E., Vaudreuil, S., Essassi, E., Qaiss, A.: Piezoelectric-polymorph formation and properties enhancement ingraphene oxide – PVDF nanocomposite films. Appl. Polym. Sci. 258, 7668–7677 (2012). https://doi.org/10.1016/j.apsusc.2012.04.118

    Article  CAS  Google Scholar 

  29. El Achaby, M., Arrakhiz, F.E., Vaudreuil, S., Qaiss, A., Bousmina, M., Fassi-Fehri, O.: Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym Composite. 33, 733–744 (2012). https://doi.org/10.1002/pc.22198

    Article  CAS  Google Scholar 

  30. El Achaby, M., Essamlali, Y., El Miri, N., Snik, A., Abdelouahdi, K., Fihri, A., Zahouily, M., Solhy, A.: Graphene oxide reinforced chitosan/polyvinylpyrrolidone polymer bio-nanocomposites. J. Appl. Polym. Sci. 131, 41042 (2014). https://doi.org/10.1002/app.41042

    Article  CAS  Google Scholar 

  31. Huang, H.D., Ren, P.G., Chen, J., Zhang, W.Q., Ji, X., Li, Z.M.: High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J. Membrane. Sci. 409–410, 156–163 (2012). https://doi.org/10.1016/j.memsci.2012.03.051

    Article  CAS  Google Scholar 

  32. Layek, R.K., Kundu, A., Nandi, A.K.: High-performance nanocomposites of sodium carboxymethylcellulose and graphene oxide. Macromol. Mater. Eng. 298(11), 1166–1175 (2013). https://doi.org/10.1002/mame.201200233

    Article  CAS  Google Scholar 

  33. Wang, R., Wu, L., Zhuo, D., Wang, Z., Tsai, T.: Fabrication of fullerene anchored reduced graphene oxide hybrids and their synergistic reinforcement on the flame retardancy of epoxy resin. Nanoscale Res. Lett. 13, 351 (2018). https://doi.org/10.1186/s11671-018-2678-z

    Article  CAS  Google Scholar 

  34. Wang, R., Zhuo, D., Weng, Z., Wu, L., Cheng, X., Zhou, Y., Wang, J., Xuan, B.: A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties. J. Mater. Chem. A 2015. 3, 9826 (2015). https://doi.org/10.1039/C5TA00722D

  35. Li, Y., Yang, T., Yu, T., Zheng, L., Liao, K.: Synergistic effect of hybrid carbonnanotube–graphene oxide as a nanofiller in enhancing the mechanicalproperties of pva composites. J. Mater. Chem. 21, 10844–10851 (2011). https://doi.org/10.1039/C1JM11359C

    Article  CAS  Google Scholar 

  36. Zhang, C., Huang, S., Tjiu, W.W., Fan, W., Liu, T.: Facile Preparation ofwater-dispersible graphene sheets stabilized by acid-treated multi-walledcarbon nanotubes and their poly(vinyl alcohol) composites. J. Mater. Chem. 22, 2427–2434 (2012). https://doi.org/10.1039/C1JM13921E

    Article  CAS  Google Scholar 

  37. Jayakumar, R., Menon, D., Manzoor, K., Nair, S.V., Tamura, H.: Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr. Polym. 82(2), 227–232 (2010). https://doi.org/10.1016/j.carbpol.2010.04.074

    Article  CAS  Google Scholar 

  38. Jorfi, M., Foster, E.J.: Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132(14), 41719 (2015). https://doi.org/10.1002/app.41719

    Article  CAS  Google Scholar 

  39. Dufresne, A.: Nanocellulose: a new ageless biomaterial: a review. Mater. Today. 16(6), 220–227 (2013). https://doi.org/10.1016/j.mattod.2013.06.004

    Article  CAS  Google Scholar 

  40. Wu, X., Lu, C., Han, Y., Zhou, Z., Yuan, G., Zhang, X.: Cellulose nanowhisker modulated 3d hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Compos. Sci. Technol. 124, 44–51 (2016). https://doi.org/10.1016/j.compscitech.2016.01.012

    Article  CAS  Google Scholar 

  41. Ye, Y.S., Zeng, H.X., Wu, J., Dong, L.Y., Zhu, J.T., Xue, Z.G., Zhou, X.P., Xie, X.L., Mai, Y.W.: Biocompatible reduced graphene oxide sheets with superior water dispersibility stabilized by cellulose nanocrystals and their polyethylene oxide composites. Green Chem. 18(6), 1674–1683 (2016). https://doi.org/10.1039/C5GC01979F

    Article  CAS  Google Scholar 

  42. Jia, Y.Y., Hu, C.R., Shi, P.D., Xu, Q.Q., Zhu, W.J., Liu, R.: Effects of cellulose nanofibrils/graphene oxide hybrid nanofiller in pva nanocomposites. Int. J. Biol. Macromol. 161, 223–230 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.013

    Article  CAS  Google Scholar 

  43. El Miri, N., El Achaby, M., Fihri, A., Larzek, M., Zahouily, M., Abdelouahdi, K., Barakate, A., Solhy, A.: Synergistic effect of cellulose nanocrystals/graphene oxidenanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites. Carbohydr. Polym. 137(10), 239–248 (2016). https://doi.org/10.1016/j.carbpol.2015.10.072

    Article  CAS  Google Scholar 

  44. Akindoyo, J.O., Ismail, N.H., Mariatti, M.: Performance of poly(vinyl alcohol) nanocomposite reinforced with hybrid TEMPO mediated cellulose-graphene filler. Polym. Test. 80, 106140 (2019). https://doi.org/10.1016/j.polymertesting.2019.106140

    Article  CAS  Google Scholar 

  45. Akindoyo, J.O., Beg, M.D.H., Ghazali, S., Heim, H.P., Feldmann, M.: Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites. Compos. Appl. Sci. Manuf. 103, 96–105 (2017). https://doi.org/10.1016/j.compositesa.2017.09.013

    Article  CAS  Google Scholar 

  46. El Miri, N., Abdelouahdi, K., Zahouily, M., Fihri, A., Barakat, A., Solhy, A., El Achaby, M.: Bio-nanocomposite films based on cellulose nanocrystals filled polyvinyl alcohol/ chitosan polymer blend. J. Appl. Polym. Sci. 132(22), 42004 (2015). https://doi.org/10.1002/app.42004

    Article  CAS  Google Scholar 

  47. El Miri, N., Abdelouahdi, K., Barakat, A., Zahouily, M., Fihri, A., Solhy, A., El Achaby, M.: Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr. Polym. 129, 156–167 (2015). https://doi.org/10.1016/j.carbpol.2015.04.051

  48. Li, D., Müller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101(2008). https://doi.org/10.1038/nnano.2007.451

  49. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour,J.M.: Improved synthesis of graphene oxide. ACS Nano 4. 8, 4806–4814 (2010). https://doi.org/10.1021/nn1006368

  50. Yan, M., Li, S., Dong, F., Han, S., Li, J., Xing, L.: Preparation of nanocrystalline cellulose from corncob acid-hydrolysis residue and its reinforcement capabilities on polyvinyl alcohol membranes. Polym. Polym. Compos. 22(8), 675–682 (2014). https://doi.org/10.1177/096739111402200804

    Article  CAS  Google Scholar 

  51. Beg, M.D., Akindoyo, J.O., Ghazali, S., Mamun, A.A.: Impact modified oil palm empty fruit bunch fiber/poly (lactic) acid composite. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 9(1), 165–170 (2015)

  52. Akindoyo, J.O., Beg, M.D.H., Ghazali, S., Islam, M.R.: Effects of poly(dimethyl siloxane) on the water absorption and natural degradation of poly(lactic acid)/oil-palm empty-fruit-bunch fiber biocomposites. J. Appl. Polym. Sci. 132(45), 47400–47410 (2015). https://doi.org/10.1002/app.42784

    Article  CAS  Google Scholar 

  53. Raghu, A.V., Gadaginamath, G.S., Mallikarjuna, N.N., Aminabhavi. T.M.: Synthesis and characterization of novel polyureas based on benzimidazoline-2-one and benzimidazoline-2-thione hard segments. J. Appl. Polym. Sci. 100, 576–583 (2006). https://doi.org/10.1002/app.23334

  54. Raghu, A.V., Jeong, H.M.: Synthesis, Characterization of Novel dihydrazide containing polyurethanes based on N1, N2-bis[(4- hydroxyphenyl)methylene]ethanedihydrazide and various diisocyanatessynthesis, characterization of novel dihydrazide containing polyurethanes based on N1, N2-Bis[(4- hydroxyphenyl)methylene]ethanedihydrazide and various diisocyanates. J. Appl. Polym. Sci. 107, 3401–3407 (2008). https://doi.org/10.1002/app.27447

    Article  CAS  Google Scholar 

  55. Raghu, A.V., Gadaginamath, G.S., Priya, M., Seema, P., Jeong, H.M., Aminabhavi, T.M.: Synthesis and characterization of novel polyurethanes based on N1,N4-bis[(4-hydroxyphenyl)methylene]succinohydrazide hard segment. J. Appl. Polym. Sci. 110, 2315–2320 (2008). https://doi.org/10.1002/app.27366

  56. Fortunati, E., Luzi, F., Puglia, D., Terenzi, A., Vercellino, M., Visai, L., Santulli, C., Torre, L., Kenny, J.M.: Ternary PVA nanocomposites containing cellulose nanocrystals from differentsources and silver particles: Part II. Carbohydr. Polym. 97, 837–848 (2013). https://doi.org/10.1016/j.carbpol.2013.05.015

    Article  CAS  Google Scholar 

  57. Fortunati, E., Puglia, D., Luzi, F., Santulli, C., Kenny, J.M., Torre, L.: BinaryPVA bio-nanocomposites containing cellulose nanocrystals extracted fromdifferent natural sources : Part I. Carbohydr. Polym. 97, 825–836 (2013). https://doi.org/10.1016/j.carbpol.2013.03.075

    Article  CAS  Google Scholar 

  58. Huang, H.D., Ren, P.G., Chen, J., Zhang, W.Q., Ji, X., Li, Z.M.: High barriergraphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J. Membr. Sci. 409–410, 156–163 (2012). https://doi.org/10.1016/j.memsci.2012.03.051

    Article  CAS  Google Scholar 

  59. de Moraes, A.C.M., Andrade, P.F., de Faria, A.F., Simões, M.B., Salomão, E.B. Barros, F.C.C.S, Do.C, M.: Gonçalves, fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate. Carbohydr. Polym. 123, 217–227(2015). https://doi.org/10.1016/j.carbpol.2015.01.034

  60. Sadasivuni, K.K., Kafy, A., Zhai, L.D., Seongcheol Mun, H-U. Ko., Kim, J.: Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11(8), 994–1002 (2015). https://doi.org/10.1002/smll.201402109

  61. George, J., Sajeevkumar, V. A., Ramana, K. V., Sabapathy, S. N., Siddaramaiah.: Augmented properties of PVA hybrid nanocomposites containingcellulose nanocrystals and silver nanoparticles. J. Mater. Chem. 22, 22433–22439(2012)

  62. George, J., Kumar, R., Sajeevkumar, V.A., Ramana, K.V., Rajamanickam, R., Abhishek, V., Nadanasabapathy, S., Siddaramaiah.: Hybrid HPMC nananocomposites containingbacterial cellulose nanocrystals and silver nanoparticles. Carbohydr. Polym. 105, 285–292 (2014). https://doi.org/10.1016/j.carbpol.2014.01.057

  63. Suhas, D.P., Aminabhavi, T.M., Raghu, A.V.: para-Toluene sulfonic acid treated clay loaded sodium alginate membranes for enhanced pervaporative dehydration of isopropanol. Appl. Clay. Sci. 101, 419–429 (2014). https://doi.org/10.1016/j.clay.2014.08.017

  64. Suhas, D.P., Aminabhavi, T.M., Raghu, A.V.: Mixed matrix membranes of H-ZSM5-loaded poly(vinyl alcohol) used in pervaporation dehydration of alcohols: influence of silica/alumina ratio. Polym. Eng. Sci. 54(8), 1774–1782 (2014). https://doi.org/10.1002/pen.23717

    Article  CAS  Google Scholar 

  65. Pereira, A.L.S., Nascimento, D.M.d., Souza Filho, M.d.s.M., Morais, J.P.S., Vasconcelos, N.F., Feitosa, J.P.A., Brígida, A.I.S., Rosa, M.F.: Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr. Polym. 112, 165–172 (2014). https://doi.org/10.1016/j.carbpol.2014.05.090

  66. Vega, J.F., Martinez-Salazar, J., Trujillo, M., Arnal, M.L., Müller, A.J., Bredeau, S., Dubois, Ph.: rheology, processing, tensile properties, and crystallization of polyethylene/carbon nanotube nanocomposites. Macromolecules 42, 4719–4727 (2009). https://doi.org/10.1021/ma900645f

    Article  CAS  Google Scholar 

  67. Xu, Y. S., Chung, D.D.L., Mroz, C.: Thermally conducting aluminum nitride polymer-matrix composites. compos. Part A: Appl.Sci. Manuf. 32(12), 1749–1757(2001). https://doi.org/10.1016/S1359-835X(01)00023-9

  68. Krishna, K.V., Kanny, K.: The effect of treatment on kenaf fiber using green approach and their reinforced epoxy composites. Compos. Part B: Eng. 104, 111–117 (2016). https://doi.org/10.1016/j.compositesb.2016.08.010

    Article  CAS  Google Scholar 

  69. Correa, C.A., Razzino, C.A., Hage, E.: Role of maleated coupling agents on the interface adhesion of polypropylene-wood composites. J. Thermoplast. Compos. Mater. 20(3), 323–339 (2007). https://doi.org/10.1177/0892705707078896

    Article  CAS  Google Scholar 

  70. Aloui, H., Khwaldia, K., Hamdi, M., Fortunati, E., Kenny, J.M., Buonocore, G.G., Lavorgna, M.: Synergistic Effect of Halloysite and Cellulose Nanocrystals on Functional Properties of PVA Based Nanocomposites. ACS Sustainable Chem. Eng. 4, 794–800 (2016). https://doi.org/10.1021/acssuschemeng.5b00806

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (52103356), Fujian Provincial Department of Science and Technology (2019Y0042, 2019J01730, 2020H0045, 2020J01770, 2020J01773), Regional Development Projects of Fujian Province (2020H4017), Major Special Project of Fujian Provincial Department of Science and Technology (2021HZ027003), Program for Innovative Research Team in Science and Technology in Fujian Province University (IRTSTFJ), “Harbour Program Talent Team Project” of Quanzhou (2018CT003), Major Science and Technology Projects of Quanzhou (2021GZ2), the Bureau of Science and Technology of Quanzhou (2019C018R, 2020C060), the Fund of Fujian Innovation Center of Additive Manufacturing (ZCZZ202-33), and Student Innovation and Entrepreneurship Training Program of Quanzhou Normal University (202110399006X and S202110399040).

Author information

Authors and Affiliations

Authors

Contributions

Dongxian Zhuo and Yanyu Zheng conceive and designed the experiments; Shaoyun Chen, Miaomiao Chen and Huiling Huang conducted the experiments; Shaoyun Chen, Xiaoying Liu, Bo Qu, Rui Wang Kewei Liu and Yanyu Zheng analyzed the results and wrote the manuscript; all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yanyu Zheng or Dongxian Zhuo.

Ethics declarations

Competing Interests

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Nanocrystalline cellulose (NCC) and graphene oxide (GO) nanosheets, as well as hybrid nanofillers with different weight NCC/GO ratios were successfully prepared and characterized.

• PVA-based nanocomposites were prepared and the synergistic effect of NCC and GO in enhancing the properties of poly(vinyl alcohol) (PVA) nanocomposites was investigated.

• PVA/NCC/GO films exhibit properties superior to those of PVA/NCC and PVA/GO films, exhibiting tensile strength and storage modulus exceeding those of pure PVA 2.56- and 2.05-fold, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Chen, M., Huang, H. et al. Nanocrystalline Cellulose– and Graphene Oxide–reinforced Polyvinyl Alcohol Films: Synthesis, Characterization, and Origin of Beneficial Co-filling Effects. Appl Compos Mater 29, 1597–1619 (2022). https://doi.org/10.1007/s10443-022-10033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10033-4

Keywords

Navigation