Skip to main content

Creep and Aging Evaluation of Phenol–Formaldehyde Carbon Fiber Composites in Overhead Transmission Lines

Abstract

The use of reinforced polymers as cores of transmission cables can provide significant advantages compared to traditional steel cores, such as high tensile strength, low thermal expansion coefficients, and low sag between towers. This work evaluates the applicability of pultruded rods consisting of phenol–formaldehyde resin reinforced with carbon fiber as cores of transmission cables. In this work, the samples were divided into three groups: samples without aging, and samples UV and thermally aged. At first, a dynamic mechanical analysis was performed on samples without aging in order to determine the viscoelastic properties of the material based on the application to see if it would be compatible. In addition to this test, tensile strength and Young's modulus were determined for the three groups. Since the composite cores are susceptible to creep in high temperatures, the applicability must be below the glass transition temperature. Regarding creep behavior, results showed that at a reference temperature of 100 °C, the stress level necessary to cause failure after 50 years was 89% of the ultimate strength. The results of tensile tests were favorable for application of the pultruded system as transmission cables cores and the accelerated aging affected positively in these composites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

Data cannot be made available because it is part of an ongoing technology transference project.

References

  1. 1.

    Shivashankar, G.S.: Overview of different overhead transmission line conductors. Mater. Today. Proc. 4, 11318–11324 (2017). https://doi.org/10.1016/j.matpr.2017.09.057

    Article  Google Scholar 

  2. 2.

    Kumar, S., Pal, G., Shah, T.: High performance overhead power lines with carbon nanostructures for transmission and distribution of electricity from renewable sources. J. Clean. Prod. 145, 180–187 (2017). https://doi.org/10.1016/j.jclepro.2017.01.053

    CAS  Article  Google Scholar 

  3. 3.

    Amaro, A.M., Reis, P.N.B., Neto, M.A., Santos, M., Santos, J.B.: Effect of the electric current on the stress relaxation behaviour of CFRP composites. Thin-Walled Struct. 149, 106659 (2020). https://doi.org/10.1016/j.tws.2020.106659

    Article  Google Scholar 

  4. 4.

    Kar, N.K., Hu, Y., Barjasteh, E., Nutt, S.R.: Tension–tension fatigue of hybrid composite rods. Compos. Part B Eng. 43, 2115–2124 (2012). https://doi.org/10.1016/j.compositesb.2012.03.006

    CAS  Article  Google Scholar 

  5. 5.

    Brazilian Institute of Environment and Renewable Natural Resources: Licenciamento Ambiental (Environmental License). (2019)

  6. 6.

    Braga, G.E., Filho, E.B.G., Nascimento, C.A.M., Nogueira, C.H.S., Nogueira, P.J.C., Motta, I.L.M., et al.: Recapacitação de linhas aéreas de transmissão existentes utilizando cabos condutores especiais de altas temperaturas de operação e baixa flecha (Commissioning of Overhead transmission lines using High Capacity Low Sag special conductors’ cables). CITENEL, Araxá,  pp. 1–3. (2007)

  7. 7.

    Mbuli, N., Xezile, R., Motsoeneng, L., Ntuli, M., Pretorius, J.-H.: A literature review on capacity uprate of transmission lines: 2008 to 2018. Electr. Power Syst. Res. 170, 215–221 (2019). https://doi.org/10.1016/j.epsr.2019.01.006

    Article  Google Scholar 

  8. 8.

    Santos, T.F.A., Vasconcelos, G.C., de Souza, W.A., Costa, M.L., Botelho, E.C.: Suitability of carbon fiber-reinforced polymers as power cable cores: Galvanic corrosion and thermal stability evaluation. Materials & Design (1980–2015) 65, 780–8 (2015). https://doi.org/10.1016/j.matdes.2014.10.005

  9. 9.

    Azevedo, C.R.F., Cescon, T.: Failure analysis of aluminum cable steel reinforced (ACSR) conductor of the transmission line crossing the Paraná River. Eng. Fail. Anal. 9, 645–664 (2002). https://doi.org/10.1016/S1350-6307(02)00021-3

    CAS  Article  Google Scholar 

  10. 10.

    Zhang, W., Yuan, X., Yang, L., Deng, M.: Research on creep constitutive model of steel cables. Constr. Build. Mater. 246, (2020). https://doi.org/10.1016/j.conbuildmat.2020.118481

    Article  Google Scholar 

  11. 11.

    Murday, J.S., Dominguez, D.D., Moran, J.A., Lee, W.D., Eaton, R.: An assessment of graphitized carbon fiber use for electrical power transmission. Synth. Met. 9, 397–424 (1984). https://doi.org/10.1016/0379-6779(84)90007-9

    CAS  Article  Google Scholar 

  12. 12.

    Behera, A., Vishwakarma, A., Thawre, M.M., Ballal, A.: Effect of hygrothermal aging on static behavior of quasi-isotropic CFRP composite laminate. Compos. Commun. 17, 51–55 (2020). https://doi.org/10.1016/j.coco.2019.11.009

    Article  Google Scholar 

  13. 13.

    Aniskevich, K., Aniskevich, A., Arnautov, A., Jansons, J.: Mechanical properties of pultruded glass fiber-reinforced plastic after moistening. Compos. Struct. 94, 2914–2919 (2012). https://doi.org/10.1016/j.compstruct.2012.04.030

    Article  Google Scholar 

  14. 14.

    Liu, T., Liu, X., Feng, P.: A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Compos. Part B Eng. 191, 107958 (2020). https://doi.org/10.1016/j.compositesb.2020.107958

    CAS  Article  Google Scholar 

  15. 15.

    Nkiwane, L., Mukhopadhyay, S.K.: Mathematical representation of creep for high‐temperature performance of nylon6.6 tire materials. J. Appl. Polym. 72, 1505–11 (1999)

  16. 16.

    Chang, F.C., Lam, F., Kadla, J.F.: Using master curves based on time–temperature superposition principle to predict creep strains of wood–plastic composites. Wood Sci. Technol. 47, 571–584 (2013). https://doi.org/10.1007/s00226-012-0518-3

    CAS  Article  Google Scholar 

  17. 17.

    Williams, M.L., Landel, R.F., Ferry, J.D.: The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955). https://doi.org/10.1021/ja01619a008

    CAS  Article  Google Scholar 

  18. 18.

    Ferry, J.D.: Viscoelastic properties of polymers, 3d edn. Wiley, New York (1980)

    Google Scholar 

  19. 19.

    Krauklis, A.E., Akulichev, A.G., Gagani, A.I., Echtermeyer, A.T.: Time–Temperature–Plasticization Superposition Principle: Predicting Creep of a Plasticized Epoxy. Polymers 11, 1848 (2019). https://doi.org/10.3390/polym11111848

    CAS  Article  Google Scholar 

  20. 20.

    Vaidyanathan, T.: Extended creep behavior of dental composites using time–temperature superposition principle. Dent. Mater. 19, 46–53 (2003). https://doi.org/10.1016/S0109-5641(02)00009-X

    CAS  Article  Google Scholar 

  21. 21.

    Nakada, M., Miyano, Y., Cai, H., Kasamori, M.: Prediction of long-term viscoelastic behavior of amorphous resin based on the time-temperature superposition principle. Mech. Time-Depend. Mater. 15, 309–316 (2011). https://doi.org/10.1007/s11043-011-9139-8

    Article  Google Scholar 

  22. 22.

    Barjasteh, E., Bosze, E.J., Tsai, Y.I., Nutt, S.R.: Thermal aging of fiberglass/carbon-fiber hybrid composites. Compos. A: Appl. Sci. Manuf. 40, 2038–2045 (2009). https://doi.org/10.1016/j.compositesa.2009.09.015

    CAS  Article  Google Scholar 

  23. 23.

    Dève, H.E.: Importance of materials in composite conductors. Electr. Power Syst. Res. 172, 290–295 (2019). https://doi.org/10.1016/j.epsr.2019.03.022

    Article  Google Scholar 

  24. 24.

    CTC Global. EngineeringTransmission Lines with High Capacity Low Sag ACCC Conductors. (2011)

  25. 25.

    Mercury Cable. History of CFCC/HVCRC. (n.d.)

  26. 26.

    Chen, G., Wang, X., Wang, J., Liu, J., Zhang, T., Tang, W.: Damage investigation of the aged aluminium cable steel reinforced (ACSR) conductors in a high-voltage transmission line. Eng. Fail. Anal. 19, 13–21 (2012). https://doi.org/10.1016/j.engfailanal.2011.09.002

    CAS  Article  Google Scholar 

  27. 27.

    Mayandi, K., Rajini, N., Ayrilmis, N., Indira Devi, M.P., Siengchin, S., Mohammad, F., et al.: An overview of endurance and ageing performance under various environmental conditions of hybrid polymer composites. J. Mater. Res. Technol. 9, 15962–15988 (2020). https://doi.org/10.1016/j.jmrt.2020.11.031

    CAS  Article  Google Scholar 

  28. 28.

    Singh, K.K., Ansari, Md.T.A., Azam, Md.S.: Fatigue life and damage evolution in woven GFRP angle ply laminates. Int. J. Fatigue 142, 105964 (2021). https://doi.org/10.1016/j.ijfatigue.2020.105964

  29. 29.

    Shabani, P., Taheri-Behrooz, F., Samareh-Mousavi, S.S., Shokrieh, M.M.: Very high cycle and gigacycle fatigue of fiber-reinforced composites: A review on experimental approaches and fatigue damage mechanisms. Prog. Mater. Sci. 100762 (2020). https://doi.org/10.1016/j.pmatsci.2020.100762

  30. 30.

    Mougel, C., Garnier, T., Cassagnau, P., Sintes-Zydowicz, N.: Phenolic foams: A review of mechanical properties, fire resistance and new trends in phenol substitution. Polymer 164, 86–117 (2019). https://doi.org/10.1016/j.polymer.2018.12.050

    CAS  Article  Google Scholar 

  31. 31.

    Ilinzeer, S., Rupp, P., Weidenmann, K.A.: Influence of corrosion on the mechanical properties of hybrid sandwich structures with CFRP face sheets and aluminum foam core. Compos. Struct. 202, 142–150 (2018). https://doi.org/10.1016/j.compstruct.2018.01.012

    Article  Google Scholar 

  32. 32.

    Munoz, J.C., Ku, H., Cardona, F., Rogers, D.: Effects of catalysts and post-curing conditions in the polymer network of epoxy and phenolic resins: Preliminary results. J. Mater. Process. Technol. 202, 486–492 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.025

    CAS  Article  Google Scholar 

  33. 33.

    Angrizani, C.C., Cioffi, M.O., Zattera, A.J., Amico, S.C.: Analysis of curaua/glass hybrid interlayer laminates. J. Reinf. Plast. Compos. 33, 472–478 (2014). https://doi.org/10.1177/0731684413517519

    CAS  Article  Google Scholar 

  34. 34.

    Yang, T.C., Wu, T.L., Hung, K.C., Chen, Y.L., Wu, J.H.: Mechanical properties and extended creep behavior of bamboo fiber reinforced recycled poly(lactic acid) composites using the time–temperature superposition principle. Constr. Build. Mater. 93, 558–563 (2015). https://doi.org/10.1016/j.conbuildmat.2015.06.038

    Article  Google Scholar 

  35. 35.

    Goertzen, W.K., Kessler, M.R.: Creep behavior of carbon fiber/epoxy matrix composites. Mater. Sci. Eng. A 421, 217–225 (2006). https://doi.org/10.1016/j.msea.2006.01.063

    CAS  Article  Google Scholar 

  36. 36.

    Almeida Júnior, J.H.S., OrnaghiJúnior, H.L., Amico, S.C., Amado, F.D.R.: Study of hybrid intralaminate curaua/glass composites. Mater. Des. 42, 111–117 (2012). https://doi.org/10.1016/j.matdes.2012.05.044

    CAS  Article  Google Scholar 

  37. 37.

    Sharma, S., Chandra, R., Kumar, P., Kumar, N.: Experimental Investigation of the Dynamic Properties of Fiber-Reinforced Composites. Comp. Mech. Comput. Appl. Int. J. 6, 307–320 (2015). https://doi.org/10.1615/CompMechComputApplIntJ.v6.i4.40

    Article  Google Scholar 

  38. 38.

    Lorandi, N.P., Cioffi, M.O.H., Ornaghi, Jr. H.: Análise Dinâmico-Mecânica de Materiais Compósitos Poliméricos. SCI CUM IND 4, 48 (2016). https://doi.org/10.18226/23185279.v4iss1p48

  39. 39.

    Gombos, Z.J., McCutchion, P., Savage, L.: Thermo-mechanical behaviour of composite moulding compounds at elevated temperatures. Compos. Part B 173, 106921 (2019). https://doi.org/10.1016/j.compositesb.2019.106921

    CAS  Article  Google Scholar 

  40. 40.

    Ornaghi, H.L., Bolner, A.S., Fiorio, R., Zattera, A.J., Amico, S.C.: Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J. Appl. Polym. Sci. n/a–n/a (2010). https://doi.org/10.1002/app.32388

  41. 41.

    Fei, J., Li, H.J., Fu, Y.W., Qi, L.H., Zhang, Y.L.: Effect of phenolic resin content on performance of carbon fiber reinforced paper-based friction material. Wear 269, 534–540 (2010). https://doi.org/10.1016/j.wear.2010.05.008

    CAS  Article  Google Scholar 

  42. 42.

    Wang, Y., Wang, S., Bian, C., Zhong, Y., Jing, X.: Effect of chemical structure and cross-link density on the heat resistance of phenolic resin. Polym. Degrad. Stab. 111, 239–246 (2015). https://doi.org/10.1016/j.polymdegradstab.2014.11.016

    CAS  Article  Google Scholar 

  43. 43.

    Ghosh, S.K., Rajesh, P., Srikavya, B., Rathore, D.K., Prusty, R.K., Ray, B.C.: Creep behaviour prediction of multi-layer graphene embedded glass fiber/epoxy composites using time-temperature superposition principle. Compos. A: Appl. Sci. Manuf. 107, 507–518 (2018). https://doi.org/10.1016/j.compositesa.2018.01.030

    CAS  Article  Google Scholar 

  44. 44.

    Sullivan, J.L., Blais, E.J., Houston, D.: Physical aging in the creep behavior of thermosetting and thermoplastic composites. Combust. Sci. Technol. 47, 389–403 (1993). https://doi.org/10.1016/0266-3538(93)90008-5

    CAS  Article  Google Scholar 

  45. 45.

    Li, R.: Time-temperature superposition method for glass transition temperature of plastic materials. Mater. Sci. Eng. A 278, 36–45 (2000). https://doi.org/10.1016/S0921-5093(99)00602-4

    Article  Google Scholar 

  46. 46.

    Wang, C., Luo, W., Liu, X., Chen, X., Jiang, L., Yang, S.: Application of time-temperature-stress equivalence to nonlinear creep in poly(methyl methacrylate). Mater. Today Commun. 21, 100710 (2019). https://doi.org/10.1016/j.mtcomm.2019.100710

    CAS  Article  Google Scholar 

  47. 47.

    Tyberg, C.S., Sankarapandian, M., Bears, K., Shih, P., Loos, A.C., Dillard, D., et al.: Tough, void-free, flame retardant phenolic matrix materials. Constr. Build. Mater. 13, 343–353 (1999). https://doi.org/10.1016/S0950-0618(99)00022-7

    Article  Google Scholar 

  48. 48.

    Ku, H., Rogers, D., Davey, R., Cardona, F., Trada, M.: Fracture Toughness of Phenol Formaldehyde Composites: Pilot Study. J. Mater. Eng. Perform. 17, 85–90 (2008). https://doi.org/10.1007/s11665-007-9115-2

    CAS  Article  Google Scholar 

  49. 49.

    Wang, J., Jiang, N., Guo, Q., Liu, L., Song, J.: Study on the structural evolution of modified phenol–formaldehyde resin adhesive for the high-temperature bonding of graphite. J. Nucl. Mater. 348, 108–113 (2006). https://doi.org/10.1016/j.jnucmat.2005.09.008

    CAS  Article  Google Scholar 

  50. 50.

    Jiang, H., Wang, J., Wu, S., Wu, R., Hu, Z., Zhang, W., et al.: Study on the property of boron carbide-modified phenol-formaldehyde resin for silicon carbide bonding. Russ. J. Appl. Chem. 87, 904–908 (2014). https://doi.org/10.1134/S1070427214070106

    CAS  Article  Google Scholar 

  51. 51.

    Plastics materials. Oxford; Boston: Butterworth-Heinemann. (1999)

  52. 52.

    Sherif El-Gizawy, A., Kuan, Y.-D.: Modeling Part Warpage and Residual Stresses in Resin Transfer Molding of Composites. Journal of Manufacturing Processes 5, 40–45 (2003). https://doi.org/10.1016/S1526-6125(03)70039-5

    Article  Google Scholar 

  53. 53.

    LS VINA. Low Sag Composite-core Conductor (LSCC). (2020). http://lsvinacns.vn/low-sag-composite-core-conductor

  54. 54.

    Alubar Cabos S/A. Ficha de Características Técnicas: Cabos de alumínio com alma de aço-CAA [Technical datasheet: Aluminium-conductor steel-reinforced cable]. (2015)

  55. 55.

    The Engineering ToolBox. Typical properties of engineering materials like steel, plastics, ceramics and composites. (2020)

  56. 56.

    Vasconcelos GC. Assessment of suitability of pultruded phenol/carbon fiber system in conductor cables. (2014)

  57. 57.

    Middleton, J., Hoffman, J., Burks, B., Predecki, P., Kumosa, M.: Aging of a polymer core composite conductor: Mechanical properties and residual stresses. Compos. A: Appl. Sci. Manuf. 69, 159–167 (2015). https://doi.org/10.1016/j.compositesa.2014.11.007

    CAS  Article  Google Scholar 

  58. 58.

    Mutlu, I., Eldogan, O., Findik, F.: Tribological properties of some phenolic composites suggested for automotive brakes. Tribol. Int. 39, 317–325 (2006). https://doi.org/10.1016/j.triboint.2005.02.002

    CAS  Article  Google Scholar 

  59. 59.

    Kol’tsov, Y.I., Kuznetsova, N.P., Solomonenko, G.V., Yudina, V.I.: Sensitivity of phenol resins to UV irradiation and their solubility in weak alkalis. Polymer Science USSR 27, 1982–6 (1985). https://doi.org/10.1016/0032-3950(85)90224-2

  60. 60.

    Britnell, D.J., Tucker, N., Smith, G.F., Wong, S.S.F.: Bent pultrusion—a method for the manufacture of pultrudate with controlled variation in curvature. J. Mater. Process. Technol. 138, 311–315 (2003). https://doi.org/10.1016/S0924-0136(03)00091-8

    Article  Google Scholar 

  61. 61.

    Chen, Y., Chen, Z., Xiao, S., Liu, H.: A novel thermal degradation mechanism of phenol–formaldehyde type resins. Thermochim. Acta 476, 39–43 (2008). https://doi.org/10.1016/j.tca.2008.04.013

    CAS  Article  Google Scholar 

  62. 62.

    Křı́stková, M., Filip, P., Weiss, Z., Peter, R.: Influence of metals on the phenol–formaldehyde resin degradation in friction composites. Polym. Degrad. Stab. 84, 49–60 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.09.012

Download references

Acknowledgements

The authors would like to acknowledge CEMIG and ANEEL for financial support and CPqD. TFA Santos thanks FACEPE, CNPq, and CAPES.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. F. A. Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasconcelos, G.C., Santos, T.F.A., Angrizani, C.C. et al. Creep and Aging Evaluation of Phenol–Formaldehyde Carbon Fiber Composites in Overhead Transmission Lines. Appl Compos Mater 28, 1697–1714 (2021). https://doi.org/10.1007/s10443-021-09935-6

Download citation

Keywords

  • Transmission cables
  • Composites
  • Creep
  • Accelerated aging