Skip to main content

The Effect of Hydrothermal Aging on the Low-Velocity Impact Behavior of Multi-Walled Carbon Nanotubes Reinforced Carbon Fiber/Epoxy Composite Pipes

Abstract

Chemical transmission lines, petroleum and natural gas lines, pressure vessels, and pipes used in thermal facilities are expected to maintain their mechanical properties for many years without being damaged and not to be corroded in working conditions. The composite materials are the right candidate for these harsh conditions due to their superior properties. Reinforcement of nanoadditives to composite materials improves both the mechanical properties and the resistance to environmental conditions, thereby increasing the lifetime. In this study, multi-walled carbon nanotube (MWCNT) reinforced [± 55°] carbon fiber/epoxy composite pipes produced with filament wound method were used. It was hydrothermally aged in 80 °C distilled water for 1, 2, 3 weeks in order to examine the effect of environmental conditions. In order to investigate its resistance against loads that may occur in working conditions, ring tensile tests (ASTM D 2290–16 procedure A), and low-velocity impact tests at 5, 10, 15 J, energy levels were carried out. The effect of hydrothermal aging on neat and MWCNT added epoxy composite had been examined by considering the aging period. Consequently, the impact resistance of neat and MWCNT added samples decreased with the aging process. Besides, tangential tensile strength loss was 17% in MWCNT reinforced sample and 13% in the neat sample.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Gunoz, A., Kepir, Y., Kara, M.: Tensile Strength Alteration of GFRP Composite Pipes Under Seawater-Dominated Conditions. J. Fail. Anal. Prev. 20(4), 1426–1430 (2020)

    Article  Google Scholar 

  2. 2.

    Kara, M., Kirici, M., Cagan, S.C.: Effects of the number of fatigue cycles on the hoop tensile strength of glass Fiber/epoxy composite pipes. J. Fail. Anal. Prev. 19(4), 1181–1186 (2019)

    Article  Google Scholar 

  3. 3.

    Gemi, L., Kara, M., Avci, A.: Low velocity impact response of prestressed functionally graded hybrid pipes. Compos. Part B Eng. 106, 154–163 (2016)

    CAS  Article  Google Scholar 

  4. 4.

    Demirci, M.T.: Low velocity impact and fracture characterization of SiO2 nanoparticles filled basalt fiber reinforced composite tubes. J. Compos. Mater. 54(23), 3415–3433 (2020)

    CAS  Article  Google Scholar 

  5. 5.

    Gunoz, A., Kepir, Y., Kara, M.: Effect of hydrothermal aging on the mechanical properties of nanocomposite pipes. Mater. Test. 63(3), 253–258 (2021)

    Article  Google Scholar 

  6. 6.

    Tarakçioğlu, N., Gemi, L., Yapici, A.: Fatigue failure behavior of glass/epoxy±55 filament wound pipes under internal pressure. Compos. Sci. Technol. 65(3–4), 703–708 (2005)

    Article  Google Scholar 

  7. 7.

    Gemi, L., Kayrıcı, M., Uludağ, M., Gemi, D.S., Şahin, Ö.S.: Experimental and statistical analysis of low velocity impact response of filament wound composite pipes. Compos. Part B Eng. 149, 38–48 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    Gemi, L., Şahin, Ö.S., Akdemir, A.: Experimental investigation of fatigue damage formation of hybrid pipes subjected to impact loading under internal pre-stress. Compos. Part B Eng. 119, 196–205 (2017)

    Article  Google Scholar 

  9. 9.

    Sahin, Ö.S., Akdemir, A., Avci, A., Gemi, L.: Fatigue crack growth behavior of filament wound composite pipes in corrosive environment. J. Reinf. Plast. Compos. 28(24), 2957–2970 (2009)

    CAS  Article  Google Scholar 

  10. 10.

    Eskizeybek, V., Ulus, H., Kaybal, H.B., Şahin, Ö.S., Avcı, A.: Static and dynamic mechanical responses of CaCO3 nanoparticle modified epoxy/carbon fiber nanocomposites. Compos. Part B Eng. 140, 223–231 (2018)

    CAS  Article  Google Scholar 

  11. 11.

    Üstün, T., Ulus, H., Karabulut, S.E., Eskizeybek, V., Şahin, Ö.S., Avcı, A., Demir, O.: Evaluating the effectiveness of nanofillers in filament wound carbon/epoxy multiscale composite pipes. Compos. Part B Eng. 96, 1–6 (2016)

    Article  Google Scholar 

  12. 12.

    Taşyürek, M., Tarakçioğlu, N.: Enhanced fatigue behavior under internal pressure of CNT reinforced filament wound cracked pipes. Compos. Part B Eng. 124, 23–30 (2017)

    Article  Google Scholar 

  13. 13.

    Tehrani, M., Boroujeni, A.Y., Hartman, T.B., Haugh, T.P., Case, S.W., Al-Haik, M.S.: Mechanical characterization and impact damage assessment of a woven carbon fiber reinforced carbon nanotube–epoxy composite. Compos. Sci. Technol. 75, 42–48 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    Kara, M., Kırıcı, M., Tatar, A.C., Avcı, A.: Impact behavior of carbon fiber/epoxy composite tubes reinforced with multi-walled carbon nanotubes at cryogenic environment. Compos. Part B Eng. 145, 145–154 (2018)

    CAS  Article  Google Scholar 

  15. 15.

    Laurenzi, S., Pastore, R., Giannini, G., Marchetti, M.: Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy. Compos. Struct. 99, 62–68 (2013)

    Article  Google Scholar 

  16. 16.

    Demirci, İ., Avcı, A., Demirci, M.T.: Investigation of nano-hybridization effects on low velocity impact behaviors of basalt fiber reinforced composites. J. Compos. Mater. 0021998320949640 (2020)

  17. 17.

    Fan, X., Lee, S., Han, Q.: Experimental investigations and model study of moisture behaviors in polymeric materials. Microelectron. Reliab. 49(8), 861–871 (2009)

    CAS  Article  Google Scholar 

  18. 18.

    Yang, B., Zhang, J., Zhou, L., Lu, M., Liang, W., Wang, Z.: Effect of fiber surface modification on water absorption and hydrothermal aging behaviors of GF/pCBT composites. Compos. Part B Eng. 82, 84–91 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    Lu, Z., Xian, G., Li, H.: Effects of exposure to elevated temperatures and subsequent immersion in water or alkaline solution on the mechanical properties of pultruded BFRP plates. Compos. Part B Eng. 77, 421–430 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    Nayak, R.K., Mahato, K.K., Ray, B.C.: Water absorption behavior, mechanical and thermal properties of nano TiO2 enhanced glass fiber reinforced polymer composites. Compos. Part A Appl. Sci. Manuf. 90, 736–747 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    Alessi, S., Pitarresi, G., Spadaro, G.: Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites. Compos. Part B Eng. 67, 145–153 (2014)

    CAS  Article  Google Scholar 

  22. 22.

    Barbosa, A.P.C., Fulco, A.P.P., Guerra, E.S., Arakaki, F.K., Tosatto, M., Costa, M.C.B., Melo, J.D.D.: Accelerated aging effects on carbon fiber/epoxy composites. Compos. Part B Eng. 110, 298–306 (2017)

    Article  Google Scholar 

  23. 23.

    Nor, A.F.M., Sultan, M.T.H., Jawaid, M., Azmi, A.M.R., Shah, A.U.M.: Analysing impact properties of CNT filled bamboo/glass hybrid nanocomposites through drop-weight impact testing, UWPI and compression-after-impact behaviour. Compos. Part B Eng. 168, 166–174 (2019)

    CAS  Article  Google Scholar 

  24. 24.

    El. Moumen, A., Tarfaoui, M., Lafdi, K., Benyahia, H.: Dynamic properties of carbon nanotubes reinforced carbon fibers/epoxy textile composites under low velocity impact. Compos. Part B Eng. 125, 1–8 (2017)

    Article  Google Scholar 

  25. 25.

    Kara, M., Uyaner, M., Avci, A., Akdemir, A.: Effect of non-penetrating impact damages of pre-stressed GRP tubes at low velocities on the burst strength. Compos. Part B Eng. 60, 507–514 (2014)

    CAS  Article  Google Scholar 

  26. 26.

    Uyaner, M., Kara, M., Şahin, A.: Fatigue behavior of filament wound E-glass/epoxy composite tubes damaged by low velocity impact. Compos. Part B Eng. 61, 358–364 (2014)

    CAS  Article  Google Scholar 

  27. 27.

    Kara, M., Kırıcı, M.: Effects of the number of fatigue cycles on the impact behavior of glass fiber/epoxy composite tubes. Compos. Part B Eng. 123, 55–63 (2017)

    CAS  Article  Google Scholar 

  28. 28.

    Taraghi, I., Fereidoon, A.: Non-destructive evaluation of damage modes in nanocomposite foam-core sandwich panel subjected to low-velocity impact. Compos. Part B Eng. 103, 51–59 (2016)

    CAS  Article  Google Scholar 

  29. 29.

    Ranjbar, M., Feli, S.: Mechanical and low-velocity impact properties of epoxy-composite beams reinforced by MWCNTs. J. Compos. Mater. 53(5), 693–705 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    Benyahia, H., Tarfaoui, M., El. Moumen, A., Ouinas, D.: Prediction of notched strength for cylindrical composites pipes under tensile loading conditions. Compos. Part B Eng. 150, 104–114 (2018)

    CAS  Article  Google Scholar 

  31. 31.

    Demirci, M.T., Tarakçıoğlu, N., Avcı, A., Akdemir, A., Demirci, I.: Fracture toughness (Mode I) characterization of SiO2 nanoparticle filled basalt/epoxy filament wound composite ring with split-disk test method. Compos. Part B Eng. 119, 114–124 (2017)

    CAS  Article  Google Scholar 

  32. 32.

    Shabani, P., Taheri-Behrooz, F., Maleki, S., Hasheminasab, M.: Life prediction of a notched composite ring using progressive fatigue damage models. Compos. Part B Eng. 165, 754–763 (2019)

    CAS  Article  Google Scholar 

  33. 33.

    Sepetcioglu, H., Gunoz, A., Kara, M.: Effect of hydrothermal ageing on the mechanical behaviour of graphene nanoplatelets reinforced basalt fibre epoxy composite pipes. Polym. Polym. Compos. 0967391121992939 (2021)

  34. 34.

    Zhou, Y., Pervin, F., Lewis, L., Jeelani, S.: Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater. Sci. Eng. A 452, 657–664 (2007)

    Article  Google Scholar 

  35. 35.

    Zhou, Y., Jeelani, M., Jeelani, S.: Development of photo micro-graph method to characterize dispersion of CNT in epoxy. Mater. Sci. Eng. A 506(1–2), 39–44 (2009)

    Google Scholar 

  36. 36.

    Zhou, Y., Pervin, F., Lewis, L., Jeelani, S.: Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes. Mater. Sci. Eng. A 475(1–2), 157–165 (2008)

    Article  Google Scholar 

  37. 37.

    ASTM: ASTM D2290: Standard test method for apparent hoop tensile strength of plastic or reinforced plastic pipe. In. ASTM International, West Conshohocken. (2012)

  38. 38.

    Ak, S.: The effect of hydrothermal aging on the mechanical properties of carbon fiber-epoxy composite pipes with carbon nanotube and boron nitride nano particles. Master Thesis (2019), Necmettin Erbakan University, Institute of Science, Konya (Turkish)

  39. 39.

    Karabulut, S.E.: The effect of carbon nanotube and boron nitride nanoparticles addition on dynamic behaviour of filament wound carbon fiber/epoxy pipes. PhD Dissertation (2017), Selçuk University, Insititute of Science, Konya (Turkish)

  40. 40.

    Uyaner, M.: Test to Graph. In. Mendeley Data, V2. (2020)

  41. 41.

    El Moumen, A., Tarfaoui, M., Lafdi, K.: Mechanical characterization of carbon nanotubes based polymer composites using indentation tests. Compos. Part B Eng. 114, 1–7 (2017)

    Article  Google Scholar 

  42. 42.

    Ma, H.-L., Jia, Z., Lau, K.-T., Leng, J., Hui, D.: Impact properties of glass fiber/epoxy composites at cryogenic environment. Compos. Part B Eng. 92, 210–217 (2016)

    CAS  Article  Google Scholar 

  43. 43.

    International, A.: ASTM Standard D7136/D7136M-15: Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. In. ASTM International West Conshohocken, PA. (2015)

Download references

Acknowledgements

This study is a part of a Master Thesis that carried out by Safa AK at Necmettin Erbakan University, Institute of Science. Memduh KARA is the advisor of this thesis. This research didn't receive grants from any funding agency in public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Memduh Kara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kara, M., Ak, S., Uyaner, M. et al. The Effect of Hydrothermal Aging on the Low-Velocity Impact Behavior of Multi-Walled Carbon Nanotubes Reinforced Carbon Fiber/Epoxy Composite Pipes. Appl Compos Mater (2021). https://doi.org/10.1007/s10443-021-09923-w

Download citation

Keywords

  • Carbon-reinforced epoxy
  • Low-velocity impact
  • MWCNT 
  • Hydrothermal aging