Skip to main content
Log in

Application of X-ray Computed Tomography to Measuring Fiber Orientation Distribution of Chopped Carbon Fiber Tape Reinforced Thermoplastics

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Evaluating the internal geometry of carbon fiber reinforced plastics is important to predict its mechanical properties and fracture behavior. In this study, we employed two different commercially available image processing software – AVIZO and 3D-Bon to analyze the fiber orientation distribution (FOD) of the chopped carbon fiber tape reinforced thermoplastics (CTT) by processing the imaged volume observed from an X-ray computed tomography (CT) system. To clarify the capability of the CT observation and subsequent analysis, the elastic modulus of CTT was estimated analytically based on the FOD data. Meanwhile, the experimental results were selected as the reference value for qualification. The local FOD, which was obtained from an individual observation, presented local anisotropy and stochastic dispersion of the fiber strands, while we found that the representative FOD of CTT can be acquired by performing CT observation and analysis on more than 15 samples. The statistical analysis and cross section observation were performed to validate the reliability of multi-sample observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carter, H.: Lighter, stiffer, faster – The case for carbon fiber composites in machinery. Reinf. Plast. 64, 8–10 (2019). https://doi.org/10.1016/j.repl.2019.08.0022019.08.002

  2. Xiao, B., Zaima, T., Shindo, K., Kohira, T., Morisawa, J., Wan, Y., Yin, G., Ohsawa, I., Takahashi, J.: Characterization and elastic property modeling of discontinuous carbon fiber reinforced thermoplastics prepared by a carding and stretching system using treated carbon fi bers. Compos. Part A. 126, 105598 (2019). https://doi.org/10.1016/j.compositesa.2019.105598

    Article  CAS  Google Scholar 

  3. Selezneva, M., Roy, S., Lessard, L., Yousefpour, A.: Analytical model for prediction of strength and fracture paths characteristic to randomly oriented strand (ROS) composites. Compos. Part B 96, 103–111 (2016). https://doi.org/10.1016/j.compositesb.2016.04.017

    Article  CAS  Google Scholar 

  4. Masubuchi, Y., Terada, M., Yamanaka, A., Yamamoto, T.: Distribution function of fi ber length in thermoplastic composites. Compos. Sci. Technol. 134, 43–48 (2016). https://doi.org/10.1016/j.compscitech.2016.08.007

    Article  CAS  Google Scholar 

  5. Hayashi, T., Takahashi, J.: Influence of void content on the flexural fracture behaviour of carbon fiber reinforced polypropylene. J. Compos. Mater. 51, 4067–4078 (2017). https://doi.org/10.1177/0021998317698215

    Article  CAS  Google Scholar 

  6. Eberhardt, C., Clarke, A.: Fibre-orientation measurements in short-glass-fibre composites. Part I : automated, high-angular-resolution measurement by confocal microscopy. Compos. Sci. Technol. 61, 1389–1400 (2001)

    Article  Google Scholar 

  7. Mlekusch, B.: Fibre orientation in short-fibre-reinforced thermoplastics II. Quantitative measurements by image analysis. Compos. Sci. Technol. 59, 547–560 (1999)

    Article  Google Scholar 

  8. Blanc, R., Germain, C., Da, J.P., Baylou, P., Cataldi, M.: Fiber orientation measurements in composite materials. Compos. Part A. 37, 197–206 (2006). https://doi.org/10.1016/j.compositesa.2005.04.021

    Article  CAS  Google Scholar 

  9. Wan, Y., Straumit, I., Takahashi, J., Lomov, S.: V: Micro-CT analysis of internal geometry of chopped carbon fiber tapes reinforced thermoplastics. Compos. Part A. 91, 211–221 (2016). https://doi.org/10.1016/j.compositesa.2016.10.013

    Article  CAS  Google Scholar 

  10. Bernasconi, A., Carboni, M., Ribani, R.: On the combined use of Digital Image Correlation and Micro Computed Tomography to measure fibre orientation in short fibre reinforced polymers. Compos. Sci. Technol. 195, 108182 (2020). https://doi.org/10.1016/j.compscitech.2020.108182

    Article  CAS  Google Scholar 

  11. Feraboli, P., Kawakami, H., Wade, B., Gasco, F., DeOto, L., Masini, A.: Recyclability and reutilization of carbon fiber fabric/epoxy composites. J. Compos. Mater. 46, 1459–1473 (2012). https://doi.org/10.1177/0021998311420604

    Article  CAS  Google Scholar 

  12. Fernandes, H., Zhang, H., Ibarra-castanedo, C., Maldague, X.: Fiber orientation assessment on randomly-oriented strand composites by means of infrared thermography. Compos. Sci. Technol. 121, 25–33 (2015). https://doi.org/10.1016/j.compscitech.2015.10.015

    Article  CAS  Google Scholar 

  13. Fischer, G.: Measuring Spatial Orientation of Short Fiber. (1988)

  14. Bernasconi, A., Cosmi, F., Dreossi, D.: Local anisotropy analysis of injection moulded fibre reinforced polymer composites. 68, 2574–2581 (2008). https://doi.org/10.1016/j.compscitech.2008.05.022

    Article  CAS  Google Scholar 

  15. Alemdar, B.A., Zhang, H., Sain, M., Cescutti, G., Müssig, J.: Determination of Fiber Size Distributions of Injection Moulded Polypropylene / Natural Fibers Using X-ray Microtomography. Adv Eng Mater 126–130 (2008). https://doi.org/10.1002/adem.200700232

  16. Requena, G., Fiedler, G., Seiser, B., Degischer, P., Di, M., Buslaps, T.: Composites : Part A 3D-Quantification of the distribution of continuous fibres in unidirectionally reinforced composites. Compos. Part A 40, 152–163 (2009). https://doi.org/10.1016/j.compositesa.2008.10.014

    Article  CAS  Google Scholar 

  17. Tserpes, K.I., Stamopoulos, A.G., Pantelakis, S.G.: A numerical methodology for simulating the mechanical behavior of CFRP laminates containing pores using X-ray computed tomography data. Compos. Part B 102, 122–133 (2016). https://doi.org/10.1016/j.compositesb.2016.07.019

    Article  CAS  Google Scholar 

  18. Liu, Y., Straumit, I., Vasiukov, D., Lomov, S.V., Panier, S.: Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray. Compos. Struct. 179, 568–579 (2017). https://doi.org/10.1016/j.compstruct.2017.07.066

    Article  Google Scholar 

  19. Barburski, M., Straumit, I., Zhang, X., Wevers, M., Lomov, S.: V: Composites : Part A Micro-CT analysis of internal structure of sheared textile composite reinforcement. Compos. Part A. 73, 45–54 (2015). https://doi.org/10.1016/j.compositesa.2015.03.008

    Article  CAS  Google Scholar 

  20. Landry, B., Hubert, P.: Composites : Part A Experimental study of defect formation during processing of randomly-oriented strand carbon / PEEK composites. Compos. Part A 77, 301–309 (2015). https://doi.org/10.1016/j.compositesa.2015.05.020

    Article  CAS  Google Scholar 

  21. Nakashima, Y., Yamashita, S., Zhang, X., Suganuma, H., Takahashi, J.: Analytical modelling of the behaviour and scatter of the flexural modulus of randomly oriented carbon fibre strand thermoplastic composites. Compos. Struct. 178, 217–224 (2017). https://doi.org/10.1016/j.compstruct.2017.07.006

    Article  Google Scholar 

  22. Yamashita, S., Sonehara, T., Takahashi, J., Kawabe, K., Murakami, T.: Effect of thin-ply on damage behaviour of continuous and discontinuous carbon fibre reinforced thermoplastics subjected to simulated lightning strike. Compos. Part A. 95, 132–140 (2017). https://doi.org/10.1016/j.compositesa.2017.01.010

    Article  CAS  Google Scholar 

  23. Picher-martel, G., Levy, A., Hubert, P.: Composites : Part A Compression moulding of Carbon / PEEK Randomly-Oriented Strands composites : A 2D Finite Element model to predict the squeeze flow behaviour. Compos. Part A. 81, 69–77 (2016). https://doi.org/10.1016/j.compositesa.2015.11.006

    Article  CAS  Google Scholar 

  24. Wan, Y., Straumit, I., Takahashi, J., Lomov, S.V.: Micro-CT analysis of the orientation unevenness in randomly chopped strand composites in relation to the strand length. Compos. Struct. 206, 865–875 (2018). https://doi.org/10.1016/j.compstruct.2018.09.002

    Article  Google Scholar 

  25. ISO527–4:1997. Determination of tensile properties Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites. (1997)

  26. Cox, H.L.: The elasticity and strength of paper and other fibrous materials. J. Appl. Phys. 3, 72–80 (1952)

    Google Scholar 

  27. Hull, D., Clyne, T.W.: An introduction to composite materials. (1981)

Download references

Acknowledgement

This work was supported by JST COI Grant Number JPMJCE1315. Our study was also supported in part by the Advanced Low Carbon Technology Research and Development Program (ALCA) and the Cross-ministerial Strategic Innovation Promotion Program (SIP) of the JST. In addition, the authors would like to thank the Industrial Technology Center of Fukui Prefecture for providing the materials used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangbin Cai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, G., Shirai, T., Wan, Y. et al. Application of X-ray Computed Tomography to Measuring Fiber Orientation Distribution of Chopped Carbon Fiber Tape Reinforced Thermoplastics. Appl Compos Mater 28, 573–586 (2021). https://doi.org/10.1007/s10443-021-09875-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09875-1

Keywords

Navigation