Skip to main content
Log in

Behavior of Mechanical Joints Prepared from EB Cured CFRP Nanocomposites Subjected to Hygrothermal Aging Under Bolt Preloads

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In the present work, the hygrothermal aging effect was studied on the performance of bolted joints prepared from electron beam (EB) cured carbon/epoxy nanocomposites under varying bolt torques. The multiwalled carbon nanotubes (MWCNTs) at different wt.% varying from 0 to 0.5 were added into the composite laminates with 0.3 wt.% giving the maximum tensile strength. The comparison of mechanical properties was done for thermally cured, EB cured (without post curing) and EB cured (post curing) composites. For hygrothermal aging of neat and 0.3 wt.% MWCNT configurations, water absorption studies were conducted at three different water temperatures i.e., 25 °C, 45 °C, and 65 °C for 30 days, as per ASTM D5229. The mechanical strength retention of aged composite specimens were analysed. Using ASTM D5961, the bolted joint specimens were prepared to investigate the bearing response and ultimate failure loads in the composite bolted joints. The damage occurred due to hygrothermal conditions has been interpreted in the light of their morphological structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Guzman, E., Cugnoni, J., Gmuer, T.: Multi-factorial models of a carbon fibre/epoxy composite subjected to accelerated environmental ageing. Compos. Struct. 111, 179–192 (2014)

    Article  Google Scholar 

  2. Soutis, C.: Introduction: Engineering requirements for aerospace composite materials. In: Irving, P.E., Soutis, C. (eds.) Polymer Composites in the Aerospace Industry, 1st edn., pp. 1–18. Elsevier, Manchester, UK (2015)

    Google Scholar 

  3. Awad, Z.K., Aravinthan, T., Zhuge, Y., Gonzalez, F.: A review of optimization techniques used in the design of fibre composite structures for civil engineering applications. Mater. Des. 33, 534–544 (2012)

    Article  CAS  Google Scholar 

  4. Kishi, H., Shi, Y.B., Huang, J., Yee, A.F.: Shear ductility and toughenability study of highly cross-linked epoxy/polyethersulphone. J. Mater. Sci. 32, 761–771 (1997)

    Article  CAS  Google Scholar 

  5. Jin, F.L., Park, S.J.: Improvement in fracture behaviors of epoxy resins toughened with sulfonated poly (ether sulfone). Polym. Degrad. Stab. 92, 509–514 (2007)

    Article  CAS  Google Scholar 

  6. Swier, S., Van, M.B.: Reaction-induced phase separation in polyethersulfone-modified epoxy-amine systems studied by temperature modulated differential scanning calorimetry. Thermochim. Acta. 330, 175–187 (1999)

    Article  CAS  Google Scholar 

  7. Janke, C.J., Norris, R.E., Yarborough, K., Havens, S.J., Lopata, V.J.: Critical parameters for electron beam curing of cationic epoxies and property comparison of electron beam cured cationic epoxies versus thermal cured resins and composites. United States, Oak Ridge National Lab (1997)

    Google Scholar 

  8. Castro, A., Kim, R.Y., Rice, B.P.: In: Scott, M.L. (ed.) Composites processing and microstructures, Vol. 4: Electron beam cure of composites for aerospace structures. Proceedings/Eleventh International Conference on Composite Materials: Gold Coast, p. 271. Woodhead Publishing, Queensland, Australia (1997)

    Google Scholar 

  9. Parrot, P., His, S., Boursereau F.: 44th International SAMPE Symposium 44, 1254 (1999)

  10. Abrams, F., Tolle, T.B.: An analysis of E-beam potential in aerospace composite manufacturing. Evol. Technol. Compet. Edge. 42, 548–557 (1997)

    CAS  Google Scholar 

  11. Feraboli, P., Masini, A.: Development of carbon/epoxy structural components for a high performance vehicle. Compos. B Eng. 35, 323–330 (2004)

    Article  Google Scholar 

  12. Saunders, C., Lopata, V., Kremers, W., Chung, M., Singh, A., Kerluke, D.: Electron curing of fibre-reinforced composites: An industrial application for high-energy accelerators. Radiat. Phys. Chem. 46, 991–994 (1995)

    Article  CAS  Google Scholar 

  13. Singh, A.: Radiation processing of carbon fibre-reinforced advanced composites. Nucl. Instrum. Methods Phys. Res. B 185, 50–54 (2001)

    Article  CAS  Google Scholar 

  14. Glauser, T., Johansson, M., Hult, A.: Electron-beam curing of thick thermoset composites: Effect of temperature and fiber. Macromol. Mater. Eng. 274, 20–24 (2000)

    Article  CAS  Google Scholar 

  15. Nishitsuji, D.A., Marinucci, G., Evora, M.C., e Silva, L.G.D.A.: Study of electron beam curing process using epoxy resin system. Nucl. Instrum. Methods Phys. Res. B 265, 135–138 (2007)

    Article  CAS  Google Scholar 

  16. Coqueret, X., Krzeminski, M., Ponsaud, P., Defoort, B.: Recent advances in electron-beam curing of carbon fiber-reinforced composites. Radiat. Phys. Chem. 78, 557–561 (2009)

    Article  CAS  Google Scholar 

  17. Raghavan, J.: Evolution of cure, mechanical properties, and residual stress during electron beam curing of a polymer composite. Compos. Part A Appl. Sci. Manuf. 40, 300–308 (2009)

    Article  Google Scholar 

  18. Vautard, F., Fioux, P., Vidal, L., Schultz, J., Nardin, M., Defoort, B.: Influence of an oxidation of the carbon fiber surface on the adhesion strength in carbon fiber-acrylate composites cured by electron beam. Int. J. Adhes. Adhes. 34, 93–106 (2012)

    Article  CAS  Google Scholar 

  19. Raghavan, J., Baillie, M.R.: Electron beam curing of polymer composites. Polym. Compos. 21, 619–629 (2000)

    Article  CAS  Google Scholar 

  20. Pitarresi, G., Alessi, S., Tumino, D., Nowicki, A., Spadaro, G.: Interlaminar fracture toughness behavior of electron-beam cured carbon-fiber reinforced epoxy–resin composites. Polym. Compos. 35, 1529–1542 (2014)

    Article  CAS  Google Scholar 

  21. Spadaro, G.A.S., Dispenza, C., Sabatino, M.A., Pitarresi, G., Tumino, D., Przbytniak, G.: Radiation curing of carbon fibre composites. Radiat. Phys. Chem. 94, 14–17 (2014)

    Article  CAS  Google Scholar 

  22. Zhao, X., Duan, Y., Li, D., Wang, B., Zhang, X.: Investigation of curing characteristics of carbon fiber/epoxy composites cured with low-energy electron beam. Polym. Compos. 36, 1731–1737 (2015)

    Article  CAS  Google Scholar 

  23. Zhang, J., Duan, Y., Zhao, X., Wang, B.: Irradiation dose control for polymer-matrix composites fabricated by in situ curing with low-energy electron beam. J. Appl. Polym. Sci. 134, 1–9 (2017)

    Google Scholar 

  24. Thoppul, S.D., Finegan, J., Gibson, R.F.: Mechanics of mechanically fastened joints in polymer–matrix composite structures–a review. Compos. Sci. Technol. 69, 301–329 (2009)

    Article  CAS  Google Scholar 

  25. Choi, J.H., Ban, C.S., Kweon, J.H.: Failure load prediction of a mechanically fastened composite joint subjected to a clamping force. J. Compos. Mater. 42, 1415–1429 (2008)

    Article  CAS  Google Scholar 

  26. Dano, M.L., Gendron, G., Picard, A.: Stress and failure analysis of mechanically fastened joints in composite laminates. Compos. Struct. 50, 287–296 (2000)

    Article  Google Scholar 

  27. Collings, T.: The strength of bolted joints in multi-directional CFRP laminates. Composites. 8, 43–55 (1977)

    Article  CAS  Google Scholar 

  28. Atas, C.: Bearing strength of pinned joints in woven fabric composites with small weaving angles. Compos. Struct. 88, 40–45 (2009)

    Article  Google Scholar 

  29. Mara, V., Haghani, R., Al-Emrani, M.: Improving the performance of bolted joints in composite structures using metal inserts. J. Compos. Mater. 50, 3001–3018 (2016)

    Article  CAS  Google Scholar 

  30. Chani, K.S., Saini, J., Bhunia, H.: Effect of nanoclay and bolt preloads on the strength of bolted joints in glass epoxy nanocomposites. J. Braz. Soc. Mech. Sci. Eng. 40, 184 (2018)

    Article  Google Scholar 

  31. Giannopoulos, I.K., Doroni, D.D., Kourousis, K.I., Yasaee, M.: Effects of bolt torque tightening on the strength and fatigue life of airframe FRP laminate bolted joints. Compos. B Eng. 125, 19–26 (2017)

    Article  Google Scholar 

  32. Smith, P., Pascoe, K.: The effect of stacking sequence on the bearing strengths of quasi-isotropic composite laminates. Compos. Struct. 6, 1–20 (1986)

    Article  Google Scholar 

  33. Qin, T., Zhao, L., Zhang, J.: Fastener effects on mechanical behaviors of double-lap composite joints. Compos. Struct. 100, 413–423 (2013)

    Article  Google Scholar 

  34. Atas, A., Soutis, C.: Strength prediction of bolted joints in CFRP composite laminates using cohesive zone elements. Compos. B Eng. 58, 25–34 (2014)

    Article  CAS  Google Scholar 

  35. Shipsha, A., Burman, M.: Failure mechanisms in NCF composite bolted joints. Experiments and FE model. Compos. B Eng. 107950 (2020)

  36. Jojibabu, P., Ram, G.J., Deshpande, A.P., Bakshi, S.R.: Effect of carbon nano-filler addition on the degradation of epoxy adhesive joints subjected to hygrothermal aging. Polym. Degrad. Stab. 140, 84–94 (2017)

    Article  CAS  Google Scholar 

  37. Gonon, P., Sylvestre, A., Teysseyre, J., Prior, C.: Combined effects of humidity and thermal stress on the dielectric properties of epoxy-silica composites. Mater. Sci. Eng. B 83, 158–164 (2001)

    Article  Google Scholar 

  38. Maggana, C., Pissis, P.: Water sorption and diffusion studies in an epoxy resin system. J. Polym. Sci. B Polym. Phys. 37, 1165–1182 (1999)

    Article  CAS  Google Scholar 

  39. Deneve, B., Shanahan, M.E.R.: Water absorption by an epoxy resin and its effect on the mechanical properties and infra-red spectra. Polym. 34, 5099–5105 (1993)

    Article  CAS  Google Scholar 

  40. Zheng, Q., Morgan, R.: Synergistic thermal-moisture damage mechanisms of epoxies and their carbon fiber composites. J. Compos. Mater. 27, 1465–1478 (1993)

    Article  CAS  Google Scholar 

  41. Ray, B.: Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites. J. Colloid. Interface. Sci. 298, 111–117 (2006)

    Article  CAS  Google Scholar 

  42. Tian, W., Hodgkin, J.: Long-term aging in a commercial aerospace composite sample: Chemical and physical changes. J. Appl. Polym. Sci. 115, 2981–2985 (2010)

    Article  CAS  Google Scholar 

  43. Dao, B., Hodgkin, J., Krstina, J., Mardel, J., Tian, W.: Accelerated ageing versus realistic ageing in aerospace composite materials. IV. Hot/wet ageing effects in a low temperature cure epoxy composite. J. Appl. Polym. Sci. 106, 4264–4276 (2007)

    Article  CAS  Google Scholar 

  44. Dao, B., Hodgkin, J., Krstina, J., Mardel, J., Tian, W.: Accelerated aging versus realistic aging in aerospace composite materials. V. The effects of hot/wet aging in a structural epoxy composite. J. Appl. Polym. Sci. 115, 901–910 (2010)

    Article  CAS  Google Scholar 

  45. Alessi, S., Pitarresi, G., Spadaro, G.: Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites. Compos. B Eng. 67, 145–153 (2014)

    Article  CAS  Google Scholar 

  46. Hong, B., Xian, G., Wang, Z.: Durability study of pultruded carbon fiber reinforced polymer plates subjected to water immersion. Adv. Struct. Eng. 21, 571–579 (2018)

    Article  Google Scholar 

  47. Bao, L.R., Yee, A.F.: Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites—part I: uni-weave composites. Compos. Sci. Technol. 62, 2099–2110 (2002)

    Article  CAS  Google Scholar 

  48. Ladhari, A., Daly, H.B., Belhadjsalah, H., Cole, K.C., Denault, J.: Investigation of water absorption in clay-reinforced polypropylene nanocomposites. Polym. Degrad. Stab. 95, 429–439 (2010)

    Article  CAS  Google Scholar 

  49. Pramoda, K., Liu, T.: Effect of moisture on the dynamic mechanical relaxation of polyamide-6/clay nanocomposites. J. Polym. Sci. B Polym. Phys. 42, 1823–1830 (2004)

    Article  CAS  Google Scholar 

  50. Chow, W., Abu, B.A., Mohd, I.Z.: Water absorption and hygrothermal aging study on organomontmorillonite reinforced polyamide 6/polypropylene nanocomposites. J. Appl. Polym. Sci. 98, 780–790 (2005)

    Article  CAS  Google Scholar 

  51. Firdosh, S., Murthy, H.N., Pal, R., Angadi, G., Raghavendra, N., Krishna, M.: Durability of GFRP nanocomposites subjected to hygrothermal ageing. Compos. B Eng. 69, 443–451 (2015)

    Article  CAS  Google Scholar 

  52. Nayak, R.K., Mahato, K.K., Ray, B.C.: Water absorption behavior, mechanical and thermal properties of nano TiO2 enhanced glass fiber reinforced polymer composites. Compos. Part A Appl. Sci. Manuf. 90, 736–747 (2016)

    Article  CAS  Google Scholar 

  53. Prusty, R.K., Rathore, D.K., Ray, B.C.: Water-induced degradations in MWCNT embedded glass fiber/epoxy composites: An emphasis on aging temperature. J. Appl. Polym. Sci. 135, 45987 (2018)

    Article  Google Scholar 

  54. Rubio, G.C., Jose, T.E., Rodriguez, G.J.A., Mornas, A., Talha, A.: Low-velocity impact behavior of glass fiber-MWCNT/polymer laminates exposed to seawater and distilled water aging. Polym. Compos. 41, 2181–2197 (2020)

    Article  Google Scholar 

  55. Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S.V., Van Vuure, A.W., Verpoest, I.: Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon 47, 2914–2923 (2009)

    Article  CAS  Google Scholar 

  56. Sun, G., Liu, Z., Chen, G.: Dispersion of pristine multi-walled carbon nanotubes in common organic solvents. NANO 5, 103–109 (2010)

    Article  CAS  Google Scholar 

  57. Kumar, M., Saini, J.S., Bhunia, H., Chowdhury, S.R.: The effect of radiation curing on mechanical joints prepared from carbon nanotubes added carbon/epoxy laminates. Polym. Compos. 41, 4260–4276 (2020)

    Article  CAS  Google Scholar 

  58. Rathore, D.K., Prusty, R.K., Kumar, D.S., Ray, B.C.: Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content. Compos. Part A Appl. Sci. Manuf. 84, 364–376 (2016)

    Article  CAS  Google Scholar 

  59. Kumar, M., Saini, J., Bhunia, H.: Investigations on the strength of mechanical joints prepared from carbon fiber laminates with addition of carbon nanotubes. J. Mech. Sci. Technol. 34, 1059–1070 (2020)

    Article  Google Scholar 

  60. Ramirez, F.A., Carlsson, L.A.: Modified single fiber fragmentation test procedure to study water degradation of the fiber/matrix interface toughness of glass/vinylester. J. Mater. Sci. 44, 3035–3042 (2009)

    Article  CAS  Google Scholar 

  61. Rao, R., Balasubramanian, N., Chanda, M.: Factors affecting moisture absorption in polymer composites part I: Influence of internal factors. J. Reinf. Plast. Compos. 3, 232–245 (1984)

    Article  CAS  Google Scholar 

  62. Awaja, F., Moon, J.B., Gilbert, M., Zhang, S., Kim, C.G., Pigram, P.J.: Surface molecular degradation of selected high performance polymer composites under low earth orbit environmental conditions. Polym. Degrad. Stab. 96, 1301–1309 (2011)

    Article  CAS  Google Scholar 

  63. Shimokawa, T., Katoh, H., Hamaguchi, Y., Sanbongi, S., Mizuno, H., Nakamura, H., Tamura, H.: Effect of thermal cycling on microcracking and strength degradation of high-temperature polymer composite materials for use in next-generation SST structures. J. Compos. Mater. 36, 885–895 (2002)

    Article  Google Scholar 

  64. Chow, W., Teoh, J., Lim, L.: Mechanical and hygrothermal aging study on polystyrene/organo-montmorillonite nanocomposites. Polym. Plast. Technol. Eng. 47, 1040–1045 (2008)

    Article  CAS  Google Scholar 

  65. Wang, H.S., Hung, C.L., Chang, F.K.: Bearing failure of bolted composite joints. Part I: experimental characterization. J. Compos. Mater. 30, 1284–1313 (1996)

    Article  Google Scholar 

Download references

Funding

This work was financially supported (No. 35/14/10/2017-BRNS with RTAC) by Bhabha Atomic Research Centre (BARC), Trombay, Mumbai (India). The authors are really thankful to the BARC team for their technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Saini, J.S., Bhunia, H. et al. Behavior of Mechanical Joints Prepared from EB Cured CFRP Nanocomposites Subjected to Hygrothermal Aging Under Bolt Preloads. Appl Compos Mater 28, 271–296 (2021). https://doi.org/10.1007/s10443-020-09864-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09864-w

Keywords

Navigation