Skip to main content
Log in

Development of CFRP with Polyaniline-based Resin using Curable Dopants Employing Storage Stable Prepregs

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Previously impregnated and stored carbon fibres i.e. prepregs are a breakthrough in the composites industries. Prepregs are extremely convenient for industrial growth. Until now epoxy-based CFRP has been the focus of the industries. This report discusses a new conductive yet inexpensive resin which can be utilized in the form of prepregs owing to its long-term stability. The major prepreg enabling properties like thermal stability, rheological properties and storage effect are studied in detail. Finally, the preliminary results of the mechanical and electrical properties of the CFRP are also encompassed in this report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yokozeki, T., Goto, T., Takahashi, T., Qian, D., Itou, S., Hirano, Y., Ishida, Y., Ishibashi, M., Ogasawara, T.: Development and characterization of CFRP using a polyaniline-based conductive thermoset matrix. Compos. Sci. Technol. 117, 277–281 (2015). https://doi.org/10.1016/J.COMPSCITECH.2015.06.016

    Article  CAS  Google Scholar 

  2. Hirano, Y., Yokozeki, T., Ishida, Y., Goto, T., Takahashi, T., Qian, D., Ito, S., Ogasawara, T., Ishibashi, M.: Lightning damage suppression in a carbon fiber-reinforced polymer with a polyaniline-based conductive thermoset matrix. Compos. Sci. Technol. 127, 1–7 (2016). https://doi.org/10.1016/J.COMPSCITECH.2016.02.022

    Article  CAS  Google Scholar 

  3. Kumar, V., Yokozeki, T., Okada, T., Hirano, Y., Goto, T., Takahashi, T., Ogasawara, T.: Effect of through-thickness electrical conductivity of CFRPs on lightning strike damages. Compos. Part A Appl. Sci. Manuf. (2018). https://doi.org/10.1016/j.compositesa.2018.09.007

    Article  Google Scholar 

  4. Pati, S., Kumar, V., Goto, T., Takahashi, T., Yokozeki, T.: Introducing a curable dopant with methacrylate functionality for polyaniline based composites. Polym. Test. 73, 171–177 (2019). https://doi.org/10.1016/j.polymertesting.2018.11.019

    Article  CAS  Google Scholar 

  5. Kumar, V., Yokozeki, T., Goto, T., Takahashi, T., Dhakate, S.R., Singh, B.P.: Irreversible tunability of through-thickness electrical conductivity of polyaniline-based CFRP by de-doping. Compos. Sci. Technol. 152, 20–26 (2017). https://doi.org/10.1016/J.COMPSCITECH.2017.09.005

    Article  CAS  Google Scholar 

  6. Stewart, R.: New prepreg materials offer versatility, top performance. Reinf. Plast. (2009). https://doi.org/10.1016/s0034-3617(09)70222-x

    Article  Google Scholar 

  7. Molyneux, M., Murray, P., P. Murray, B.: Prepreg, tape and fabric technology for advanced composites. Composites. (1983). https://doi.org/10.1016/S0010-4361(83)80003-2

  8. Grunenfelder, L.K., Dills, A., Centea, T., Nutt, S.: Effect of prepreg format on defect control in out-of-autoclave processing. Compos. Part A Appl. Sci. Manuf. (2017). https://doi.org/10.1016/j.compositesa.2016.10.027

    Article  Google Scholar 

  9. Katunin, A., Krukiewicz, K., Turczyn, R., Sul, P., Łasica, A., Bilewicz, M.: Synthesis and characterization of the electrically conductive polymeric composite for lightning strike protection of aircraft structures. Compos. Struct. (2017). https://doi.org/10.1016/j.compstruct.2016.10.028

    Article  Google Scholar 

  10. Pati, S., Kumar, V., Goto, T., Takahashi, T., Yokozeki, T.: Synthesis and characterization of PANI/P-2M conductive composites: Thermal, rheological, mechanical, and electrical properties. Polym. Compos. 1–8 (2019). https://doi.org/10.1002/pc.25293

  11. Yu, Y., Su, H., Gan, W.: Effects of Storage Aging on the Properties of Epoxy Prepregs. Ind. Eng. Chem. Res. 48, 4340–4345 (2009). https://doi.org/10.1021/ie8018005

    Article  CAS  Google Scholar 

  12. Ji, K.J., Wei, C.Y., Deng, W.H., Zhang, Y.S., Liu, Y.J., Mao, R.Z., Wang, X.: Evaluation of Glass Fibre/Epoxy Prepreg Quality during Storage. Polym. Polym. Compos. 10, 599–606 (2002). https://doi.org/10.1177/096739110201000803

    Article  CAS  Google Scholar 

  13. Pappalardo, L.T.: DSC evaluation of epoxy and polyimide-impregnated laminates (prepregs). J. Appl. Polym. Sci. 21, 809–820 (1977). https://doi.org/10.1002/app.1977.070210321

    Article  CAS  Google Scholar 

  14. Costa, M.L., Rezende, M.C., de Paiva, J.M.F., Botelho, E.C.: Structural Carbon/Epoxy Prepregs Properties Comparison by Thermal and Rheological Analyses. Polym. Plast. Technol. Eng. 45, 1143–1153 (2006). https://doi.org/10.1080/03602550600887251

    Article  CAS  Google Scholar 

  15. Guo, Z.-S.: Effects of storage aging on the cure kinetics of T700/BMI prepregs for advanced composites. Polym. Compos. 29, 1269–1275 (2008). https://doi.org/10.1002/pc.20457

    Article  CAS  Google Scholar 

  16. Frigione, M., Kenny, J.M.: Effects of storage aging on the cure kinetics of bismaleimide prepregs. Adv. Polym. Technol. 24, 253–265 (2005). https://doi.org/10.1002/adv.20048

    Article  CAS  Google Scholar 

  17. Antonucci, V., Giordano, M., Nicolais, L., Calabrò, A., Cusano, A., Cutolo, A., Inserra, S.: Resin flow monitoring in resin film infusion process. In: Journal of Materials Processing Technology (2003)

  18. Garschke, C., Parlevliet, P.P., Weimer, C., Fox, B.L.: Cure kinetics and viscosity modelling of a high-performance epoxy resin film. Polym. Test. (2013). https://doi.org/10.1016/j.polymertesting.2012.09.011

    Article  Google Scholar 

  19. Woo, I.L., Loos, A.C., Springer, G.S.: Heat of Reaction, Degree of Cure, and Viscosity of Hercules 3501–6 Resin. J. Compos. Mater. (1982). https://doi.org/10.1177/002199838201600605

    Article  Google Scholar 

  20. Siddiqui, N.A., Khan, S.U., Ma, P.C., Li, C.Y., Kim, J.-K.: Manufacturing and characterization of carbon fibre/epoxy composite prepregs containing carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 42, 1412–1420 (2011). https://doi.org/10.1016/J.COMPOSITESA.2011.06.005

    Article  Google Scholar 

  21. Xu, Y., Hoa, S.V.: Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos. Sci. Technol. (2008). https://doi.org/10.1016/j.compscitech.2007.08.013

    Article  Google Scholar 

  22. Gu, H., Tadakamalla, S., Zhang, X., Huang, Y., Jiang, Y., Colorado, H.A., Luo, Z., Wei, S., Guo, Z.: Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi-walled carbon nanotubes. J. Mater. Chem. C. (2013). https://doi.org/10.1039/c2tc00379a

    Article  Google Scholar 

  23. Zhu, J., Wei, S., Yadav, A., Guo, Z.: Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in-situ stabilized carbon nanofibers. Polymer (Guildf). 51, 2643–2651 (2010). https://doi.org/10.1016/j.polymer.2010.04.019

  24. Yue, L., Pircheraghi, G., Monemian, S.A., Manas-Zloczower, I.: Epoxy composites with carbon nanotubes and graphene nanoplatelets – Dispersion and synergy effects. Carbon N. Y. 78, 268–278 (2014). https://doi.org/10.1016/j.carbon.2014.07.003

  25. Corcione, C. e., Friogione, M.: A novel procedure able to predict the rheological behavior of trifunctional epoxy resin/hyperbranched aliphatic polyester mixture. Polym. Test. 28, 830–835 (2009). https://doi.org/10.1016/j.polymertesting.2009.07.005

  26. Kamal, M.R., Mutel, A.: Rheological Properties of Suspensions in Newtonian and Non-Newtonian Fluids. J. Polym. Eng. (1985). https://doi.org/10.1515/POLYENG.1985.5.4.293

    Article  Google Scholar 

  27. Ghijsels, A., Groesbeek, N., Raadsen, J.: Temperature dependence of the zero-shear melt viscosity of oligomeric epoxy resins. Polymer (Guildf). (1984). https://doi.org/10.1016/0032-3861(84)90203-9

    Article  Google Scholar 

  28. Song, Y.S., Youn, J.R.: Properties of epoxy nanocomposites filled with carbon nanomaterials. e-Polymers. 4, (2013). https://doi.org/10.1515/epoly.2004.4.1.925

  29. Roller, M.B.: Characterization of the time-temperature-viscosity behavior of curing B-staged epoxy resin. Polym. Eng. Sci. (1975). https://doi.org/10.1002/pen.760150603

    Article  Google Scholar 

  30. Park, J.O., Jang, S.H.: Synthesis and characterization of bismaleimides from epoxy resins. J. Polym. Sci. Part A Polym. Chem. (1992). https://doi.org/10.1002/pola.1992.080300504

  31. Sbirrazzuoli, N., Vyazovkin, S.: Learning about epoxy cure mechanisms from isoconversional analysis of DSC data. Thermochim. Acta. 388, 289–298 (2002). https://doi.org/10.1016/S0040-6031(02)00053-9

  32. Prime, R.B.: Differential scanning calorimetry of the epoxy cure reaction. Polym. Eng. Sci. (1973). https://doi.org/10.1002/pen.760130508

    Article  Google Scholar 

  33. Sickfeld, J., Mielke, W.: Application of thermal analysis for the investigation of epoxy resins. Prog. Org. Coatings. (1984). https://doi.org/10.1016/0033-0655(84)80003-5

    Article  Google Scholar 

  34. Serafini, T.T., Delvigs, P., Lightsey, G.R.: Thermally stable polyimides from solutions of monomeric reactants. J. Appl. Polym. Sci. (1972). https://doi.org/10.1002/app.1972.070160409

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Japanese Society for the Promotion of Science for the grant with grant number JSPS 16H02424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pati.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pati, S., Manomaisantiphap, S., Goto, T. et al. Development of CFRP with Polyaniline-based Resin using Curable Dopants Employing Storage Stable Prepregs. Appl Compos Mater 28, 381–394 (2021). https://doi.org/10.1007/s10443-020-09856-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09856-w

Keywords

Navigation