Skip to main content
Log in

Bamboo like SiC Nanowires Grown in a Dual-Temperature Zone Reaction System Enhance the Oxidation and Thermal Shock Resistance of SiC Coatings

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The life of high temperature coating mainly depends on its oxidation resistance and bonding strength with the substrate. SiCnws / SiC coatings were prepared by a self-made two temperature reaction system and chemical vapor deposition method. The oxidation resistance of the composite coating at 900 ℃ and 1500 ℃ and the thermal shock resistance at 1500 ℃ were studied. The fracture toughness and bonding strength of the composite coating were increased by 53.8% and 9.8 times, respectively, due to the stable mechanical linkage effect between the bamboo like SiC nanowires with special nodes and SiC. Due to the healing effect of glass phase SiO2, the weight loss rate of bamboo like SiCnws / SiC coating sample after oxidation at 900 ℃ for 30 h is about 5.28%, and that after isothermal oxidation at 1500 ℃ for 60 h is only 0.74%. In addition, bamboo like SiCnws can effectively alleviate the thermal expansion coefficient mismatch between SiC coating and substrate. After 25 thermal shock cycles, the final oxidation weight loss rate of composite coating is only 2.03%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Djugum, R., Sharp, K.: The fabrication and performance of C/C composites impregnated with TaC filler. Carbon 115, 105–115 (2017)

    Article  CAS  Google Scholar 

  2. Cao, X.Q., Vassen, R., Stoever, D.: Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24, 1–10 (2004). https://doi.org/10.1016/S0955-2219(03)00129-8

    Article  CAS  Google Scholar 

  3. Zhuang, L., Fu, Q.-G., Tan, B.-Y., Guo, Y.-A., Ren, Q.-W., Li, H.-J., Li, B., Zhang, J.-P.: Ablation behaviour of C/C and C/C-ZrC-SiC composites with cone-shaped holes under an oxyacetylene flame. Corros. Sci. 102, 84–92 (2016)

    Article  CAS  Google Scholar 

  4. B W Z A, B P X, B W L, et al. Microstructural evolution of SiC coating on C/C composites exposed to 1500°C in ambient air[J]. Ceramics International, (2019), 45(1):854–860.

  5. Jin, X., Fan, X., Lu, C., Wang, T.: Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites. J. Eur. Ceram. Soc. 38, 1–28 (2018)

    Article  CAS  Google Scholar 

  6. P. Chowdhury, H. Sehitoglu, R. Rateick, Damage tolerance of carbon-carbon composites in aerospace application, Carbon 126 (2018) 382e393.

  7. Zhou, W., Long, L., Xiao, P., et al.: Comparison in dielectric and microwave absorption properties of SiC coated carbon fibers with PyC and BN interphases[J]. Surf. Coat. Technol. 359, 272–277 (2018)

    Article  Google Scholar 

  8. Zhou W, Li Y, Long L, et al. High‐temperature electromagnetic wave absorption properties of Cf/SiCNFs/Si3N4 composites[J]. Journal of the American Ceramic Society, (2020).

  9. Long L, Xu J, Luo H, et al. Dielectric response and electromagnetic wave absorption of novel macroporous short carbon fibers/mullite composites[J]. Journal of the American Ceramic Society, (2020).

  10. Zhou W, Long Y. Mechanical properties of CVD-SiC coatings with Si impurity[J]. Ceramics International, (2018), 44: S0272884218323332-.

  11. E.L. Corral, R.E. Loehman, Ultra-high-temperature ceramic coatings for oxidation protection of carbon-carbon composites, J. Am. Ceram. Soc. 91(2008) 1495e1502.

  12. Q.G. Fu, J.Y. Jing, B.Y. Tan, R.M. Yuan, L. Zhuang, L. Li, Nanowire-toughened transition layer to improve the oxidation resistance of SiC-MoSi2-ZrB2coating for C/C composites, Corrosion Sci. 111 (2016) 259e266.

  13. Y. Yang, K.Z. Li, Z.G. Zhao, G.X. Liu, HfC-ZrC-SiC multiphase protective coating for SiC-coated C/C composites prepared by supersonic atmospheric plasma spraying, Ceram. Int. 43 (1) (2016) 1495e1503.

  14. Liu, C., Cheng, L., Luan, X., et al.: High-temperature fatigue behavior of SiC-coated carbon/carbon composites in oxidizing atmosphere[J]. J. Eur. Ceram. Soc. 29(3), 481–487 (2009)

    Article  CAS  Google Scholar 

  15. Zeng, X.R., Li, H.J., Yang, Z., Kang, M.K.: Investigation of microstructure for oxidation protection coated C/C composites. Trans. Met. Heat Treat. 21, 64 (2000)

    CAS  Google Scholar 

  16. Fu, Q.-G., Li, H.-J., Li, K.-Z., Tong, K.: A SiC-Mo-W coating to protect SiC-coated carbon/carbon composites against oxidation. J. Am. Ceram. Soc. 92, 2132–2135 (2009)

    Article  CAS  Google Scholar 

  17. Zishan, C., Hejun, L., Qiangang, F.: SiC wear resistance coating with added Ni, for carbon/carbon composites. Surf. Coating. Technol. 213, 207–215 (2012)

    Article  Google Scholar 

  18. Lin X, Xinchao L, Liyong N, et al. Ablation behavior of functional gradient ceramic coating for porous carbon-bonded carbon fiber composites[J]. Corrosion Science, 2018, 142: S0010938X17322059-.

  19. Zhou, W., Long, L., Xiao, P., et al.: Silicon carbide nano-fibers in-situ grown on carbon fibers for enhanced microwave absorption properties[J]. Ceram. Int. 43(7), 5628–5634 (2017)

    Article  CAS  Google Scholar 

  20. Xia X, Li Y, Long L, et al. Modeling for the electromagnetic properties and EMI shielding of Cf/mullite composites in the gigahertz range[J]. Journal of the European Ceramic Society, (2020).

  21. Liu, Y., Wan, J., Zuo, X., et al.: Oxidation behavior of 2D C/SiC composites coated with multi-layer SiC/Si–B–C/SiC coatings under wet oxygen atmosphere[J]. Applied Surface ence 353, 214–223 (2015)

    Article  CAS  Google Scholar 

  22. Fei Liu, Li H, Gu S, et al. Microstructure and oxidation property of CrSi2-ZrSi2-Y2O3/SiC coating prepared on C/C composites by supersonic atmosphere plasma spraying[J]. Surface and Coatings Technology, (2019).

  23. Yanhui, C., Qiangang, F., Cuiwei, C., et al.: SiC nanowire-toughened SiC-MoSi2-CrSi2 oxidation protective coating for carbon/carbon composites[J]. Surf. Coat. Technol. 205(2), 413–418 (2010)

    Article  Google Scholar 

  24. Chu, Y., Fu, Q., Li, H., et al.: Effect of SiC nanowires on the mechanical and oxidation protective ability of SiC coating for C/C composites[J]. J. Am. Ceram. Soc. 95(2), 739–745 (2012)

    Article  CAS  Google Scholar 

  25. Qiang, X., Li, H., Zhang, Y., et al.: Fabrication and thermal shock resistance of in situ SiC nanowire-SiC/SiC coating for carbon/carbon composites[J]. Corros. Sci. 59, 343–347 (2012)

    Article  CAS  Google Scholar 

  26. Chu, Y., Li, H., Li, L., et al.: Oxidation protection of C/C composites by ultra long SiC nanowire-reinforced SiC-Si coating[J]. Corros. Sci. 84, 204–208 (2014)

    Article  CAS  Google Scholar 

  27. Jianfeng, H., Lei, Z., Liyun, C., et al.: Effect of the incorporation of SiC nanowire on mullite/SiC protective coating for carbon/carbon composites[J]. Corros. Sci. 107, 85–95 (2016)

    Article  Google Scholar 

  28. Zhuang, L., Fu, Q.G., Yu, X.: Improved thermal shock resistance of SiCnw/PyC core-shell structure-toughened CVD-SiC coating[J]. J. Eur. Ceram. Soc. 38(7), 2808–2814 (2018)

    Article  CAS  Google Scholar 

  29. Chu, Y., Li, H., Fu, Q., et al.: Oxidation protection of SiC-coated C/C composites by SiC nanowire-toughened CrSi2-SiC-Si coating[J]. Corros. Sci. 55, 394–400 (2012)

    Article  CAS  Google Scholar 

  30. Zhang, Y., Zhang, P., Ren, J., et al.: SiC nanowire-toughened MoSi2-WSi2-SiC-Si multiphase coating for improved oxidation resistance of C/C composites[J]. Ceram. Int. 42(11), 12573–12580 (2016)

    Article  CAS  Google Scholar 

  31. Wang, P.P., Tong, M.D., Wang, H.H., et al.: Gradient HfB2-SiC multilayer oxidation resistant coating for C/C composites[J]. Ceram. Int. 44(17), 20968–20973 (2018)

    Article  CAS  Google Scholar 

  32. Li B, Mao B, Wang X, et al. Fabrication and frictional wear property of bamboo-like SiC nanowires reinforced SiC coating[J]. Surface and Coatings Technology, (2020):125647.

  33. Wang, Y., Chen, Z., Yu, S., et al.: A novel ultra-light reticulated SiC foam with hollow skeleton[J]. J. Eur. Ceram. Soc. 37(1), 53–59 (2017)

    Article  Google Scholar 

  34. Jia D C, Zhou Y. Research progress in thermal shock resistance of ceramic materials[J]. Materials science and technology. (1993), 04:101–107. (China)

Download references

Acknowledgements

The work reported here was supported by ‘the Fundamental Research Funds for the Central Universities, NO. NS2019035’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binbin Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wang, X., Mao, B. et al. Bamboo like SiC Nanowires Grown in a Dual-Temperature Zone Reaction System Enhance the Oxidation and Thermal Shock Resistance of SiC Coatings. Appl Compos Mater 28, 1–15 (2021). https://doi.org/10.1007/s10443-020-09845-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09845-z

Keywords

Navigation