Skip to main content
Log in

Detection of Damage in CFRP by Wavelet Packet Transform and Empirical Mode Decomposition: an Hybrid Approach

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The integrity of the CFRP specimens is tested using acousto-ultrasonic testing method. To validate the acousto-ultrasonic test mode, the specimens are tested before and after a Barely Visible Impact Damage induced by an impactor. A special model is created to use both Wavelet Packet Transform and Empirical Mode Decomposition, for decomposing the recorded waveforms. This mode also enables the reconstruction of the decomposed waveforms, discarding the residual signal in the parent waveform, and calculates the energy associated with each frequency band of the reconstructed signal. By using the percentage of energy recovered by the receiver compared to the signal sent through the specimen, the integrity of the specimens is identified. Moreover, the properties of each specimen and the extent of its damage, albeit qualitatively along the longitudinal and transverse directions can also be assessed by using this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grosse, C.: Introduction. In: Grosse, C., Ohtsu, M. (eds.) Acoustic emission testing. Springer, Berlin (2008)

    Chapter  Google Scholar 

  2. Oz, F.E., Ersoy, N., Lomov, S.V.: Do high frequency acoustic emission events always represent fibre failure in CFRP laminates? Compos. Part A Appl. S. 103, 230–235 (2017)

    Article  CAS  Google Scholar 

  3. Saeedifar, M., Najafabadia, M.A., Zarouchas, D., Toudeshky, H.H., Jalalvand, H.: Barely visible impact damage assessment in laminated composites using acoustic emission. Compos. Part-B Eng. 152, 180–192 (2018)

    Article  CAS  Google Scholar 

  4. Vary, A.: The acousto-ultrasonic approach. In: Duke, J.C. (ed.) Acousto-Ultrasonics. Springer, Boston (1988)

    Chapter  Google Scholar 

  5. Kanninen, M.F., Popelar, C.H.: Advanced fracture mechanics. Oxford University Press, New York (1985)

    Google Scholar 

  6. Duke, J.C.: A Study of the stress wave factor technique for evaluation of composite materials. National Aeronautics and Space Administration, Scientific and Technical Information Division (1989)

  7. Janapati, V., Kopsaftopoulos, F., Li, F., Lee, S.J., Chang, F.K.: Damage detection sensitivity characterization of acousto-ultrasound-based structural health monitoring techniques. Struct. Health Monit. 15(2), 143–161 (2016)

    Article  Google Scholar 

  8. Bulletti, A., Giannelli, P., Calzolai, M., Capineri, L.: An Integrated Acousto/Ultrasonic Structural Health Monitoring System for Composite Pressure Vessels. IEEE T. Ultrason. Ferr. 63(6), 864–873 (2016)

    Article  Google Scholar 

  9. Chrysochoidis, N.A., Barouni, A.K., Saravanos, D.A.: Delamination detection in composites using wave modulation spectroscopy with a novel active nonlinear acousto-ultrasonic piezoelectric sensor. J. Intel. Mat. Syst. Str. 22(18), 2193–2206 (2011)

    Article  Google Scholar 

  10. Lemistre, M.B., Balageas, D.L.: A Hybrid Electromagnetic Acousto-Ultrasonic Method for SHM of Carbon/Epoxy Structures. Struct. Health Monit. 2(2), 153–160 (2003)

    Article  Google Scholar 

  11. Barile, C., Casavola, C., Pappalettera, G., Vimalathithan, P.K.: Acousto-ultrasonic evaluation of interlaminar strength on CFRP laminates. Compos. Struct. 208, 796–805 (2019)

    Article  Google Scholar 

  12. Finkel, P., Mitchell, J.R., Carlos, M.F.: Experimental study of ‘Auto Sensor Test-Self Test Mode’ for acoustic emission system performance verification. AIP. Conf. Proc. 509, 1995–2002 (2000)

    Article  Google Scholar 

  13. Barile, C., Casavola, C., Pappalettera, G., Pappalettere, C., Vimalathithan, P.K.: Investigation of Structural Integrity of Composite Materials using Wavelet Packet Transform. Procedia Engineer. 17, 522–588 (2019)

    Google Scholar 

  14. Barile, C., Casavola, C., Pappalettera, G., Vimalathithan, P.K.: Damage characterization in composite materials using acoustic emission signal-based and parameter-based data. Compos. Part-B: Eng. 178, 107469 (2019)

    Article  CAS  Google Scholar 

  15. ASTM D7136 / D7136M-15: Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International, West Conshohocken (2015), www.astm.org

    Google Scholar 

  16. Wickerhauser, M.V.: Wavelet packets. In: Wickerhauser, M.V. (ed.) Adapted wavelet analysis from theory to software. A. K. Peters, Ltd, Natick (1994)

    Google Scholar 

  17. Mohammadi, R., Saeedifar, M., Toudeshky, H.H., Najafabadi, M.A., Fotouhi, M.: Prediction of delamination growth in carbon/epoxy composites using a novel acoustic emission-based approach. J. Reinf. Plast. Compos. 34, 868–878 (2015)

    Article  CAS  Google Scholar 

  18. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. Lond. A. 454, 903–995 (1998)

    Article  Google Scholar 

  19. emd – Empirical Mode Decomposition. available at https://mathworks.com/help/signal/ref/emd.html. Accessed Mar 2020

  20. Weng, B., Barner, K.E.: Optimal signal reconstruction using the empirical mode decomposition   EURASIP J. Adv. Signal Process. 2008, 845294 (2008)

    Article  Google Scholar 

  21. Vary, A.A.: Review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites. “New Horizons -Materials and Processes for the Eighties”. SAMPE, Azusa (1979)

    Google Scholar 

  22. Vary, A., Bowles, K.J.: An ultrasonic-acoustic technique for nondestructive evaluation of fiber composite quality. Polym. Eng. Sci. 19, 373–376 (1979)

    Article  CAS  Google Scholar 

  23. Vary, A.: Acousto-ultrasonic characterisation of fiber reinforced composites. Mater. Eval. 40, 650–654 (1982)

    Google Scholar 

  24. Pollard, H.F.: Sound waves in solids. Pion Limited, London (1977)

    Google Scholar 

  25. Moon, S.M., Jerina, K.L., Hahn, H.T.: Acousto-ultrasonic wave propagation in composite laminates. In: Duke, J.C. (ed.) Acousto-Ultrasonics. Springer, Boston (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Formal Analysis and Investigation – Paramsamy Kannan Vimalathithan, Claudia Barile and Giovanni Pappalettera

Methodology and Validation – Paramsamy Kannan Vimalathithan, Claudia Barile and Giovanni Pappalettera

Data Curation – Paramsamy Kannan Vimalathithan

Original Draft Preparation – Paramsamy Kannan Vimalathithan

Reviewing and Editing – Claudia Barile and Giovanni Pappalettera

Supervision and Project Administration – Caterina Casavola and Carmine Pappalettere

All authors have checked and approved the final article is true and valid.

Corresponding author

Correspondence to Claudia Barile.

Ethics declarations

Conflict of Interest

The authors declare do conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barile, C., Casavola, C., Pappalettera, G. et al. Detection of Damage in CFRP by Wavelet Packet Transform and Empirical Mode Decomposition: an Hybrid Approach. Appl Compos Mater 27, 641–655 (2020). https://doi.org/10.1007/s10443-020-09823-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09823-5

Keywords

Navigation