Skip to main content
Log in

Two Hybrid Approaches to Fatigue Modeling of Advanced-Sheet Molding Compounds (A-SMC) Composite

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

To reinforce the environmental standards, we need to strengthen the lightening of vehicles and to generalize new composite materials in order to reduce weight. To use these innovative composite materials in the mass production of automotive parts, it is essential to propose a predictive approach of the S-N curves, which must be established for each new composite formulation and for several types of microstructure within real components. Although these preliminary characterizations consume time and money, this paper proposes two hybrid methodologies to predict the fatigue life during the fatigue test. Both methodologies are based on micromechanical modeling which is developed under monotonous loading with fatigue effects under different amplitudes. The suggested methodology is based on an experimental analysis of monotonic behavior under fatigue loading and on multi-scale modeling of damage. In the results, the proposed model and the used approaches are in good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Degrieck, J., Van Paepegem, W.: Fatigue damage Modelling of fibre-reinforced composite materials. Review. Applied Mechanics Reviews. 54(4), 279–300 (2001)

    Google Scholar 

  2. Simoes, T., Octavio, C., Valença, J., Costa, H., Dias-da-Costa, D., Júlio, E.: Influence of concrete strength and steel fibre geometry on the fibre/matrix interface. Composites Part B. 122, 156–164 (2017)

    CAS  Google Scholar 

  3. Rolland, H., Saintier, N., Wilson, P., Merzeau, J., Robert, G.: In situ X-ray tomography investigation on damage mechanisms in short glass fibre reinforced thermoplastics: effects of fibre orientation and relative humidity. Composites Part B. 109, 170–186 (2017)

    CAS  Google Scholar 

  4. Mortazavian, S., Fatemi, A.: Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Composites Part B. 72, 116–129 (2015)

    CAS  Google Scholar 

  5. Roundi, W., El Mahi, A., El Gharad, A., Rebière, J.L.: Experimental and numerical investigation of the effects of stacking sequence and stress ratio on fatigue damage of glass/epoxy composites. Composites Part B. 109, 64–71 (2017)

    CAS  Google Scholar 

  6. Arif, M.F., Saintier, N., Meraghni, F., Fitoussi, J., Chemisky, Y., Robert, G.: Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66. Composites Part B. 61, 55–65 (2014)

    CAS  Google Scholar 

  7. G. KALAPRASAD, K. JOSEPH, S. THOMAS. Theoretical modelling of tensile properties of short sisal fibre reinforced low-density polyethylene composites. Journal of composite materials

  8. JAYAMOL GEORGE, M. S. SREEKALA, and SABU THOMAS. A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites. POLYMER ENGINEERING AND SCIENCE, SEPTEMBER 2001, Vol. 41, No. 9

  9. Laly, A.: Pothana, SabuThomas. G.Groeninckxc. The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites. Composites Part A: Applied Science and Manufacturing. 37(9), 1260–1269 (September 2006)

    Google Scholar 

  10. Maya Jacob, Sabu Thomas, K.T. Varughese . Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Composites Science and Technology Volume 64, Issues 7–8, June 2004, Pages 955–965

  11. Thomas, S., Joseph, K.: S. K. Malhotra, Koichi Goda, M. S. Sreekala. Book polymer composites. Macro- and Microcomposites. https://books.google.fr/books?hl=fr&lr=&id=et-RNth7xL8C&oi=fnd&pg=PR5&dq=Prof.+Goda+et+al&ots=ybY44foUhu&sig=EddGG6qF5EibIXewEh6ocuaEupU#v=onepage&q&f=false

  12. Tamboura S, 1999. “Etude microstructurale et mécanique de l’endommagement en fatigue du matériau composite type SMC R42”, Thèse de l’ENIT Tunis. 13 Juillet 1999

  13. Bardia E, 2011. Approche cinétique du comportement en fatigue du polyaide 66 renforcé par 30% de fibres de verre

    Google Scholar 

  14. Khan, R., Alderliesten, R., Badshah, S., Benedictus, R.: Effect of stress ratio or mean stress on fatigue delamination growth in composites: critical review. Compos. Struct. 124, 214–227 (2015)

    Google Scholar 

  15. Andersons, J., Hojob, M., Ochiaic, S.: Empirical model for stress ratio effect on fatigue delamination growth rate in composite laminates. Int. J. Fatigue. 26(6), 597–604 (2004)

    CAS  Google Scholar 

  16. Kotik, H., Perez, I.J.: Frequency effect in short-beam shear fatigue of a glass fiber reinforced polyester composite. Int. J. Fatigue. 90, 116–124 (2016)

    CAS  Google Scholar 

  17. Eftekhari, M., Fatemi, A.: On the strengthening effect of increasing cycling frequency on fatigue behavior of some polymers and their composites. Experiments and modeling: International Journal of Fatigue. 87, 153–166 (2016)

    CAS  Google Scholar 

  18. Passipoularidis V, Brondsted P. Fatigue Evaluation Algorithms: Review. Roskilde: Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi 2010. (Denmark. Forskningscenter Risoe. Risoe-R; No. 1740(EN))

  19. Sendeckyj GP. Chapter 10 - Life Prediction for Resin-Matrix Composite Materials. In: Reifsnider KL, éditeur. Composite Materials Series [Internet]. Elsevier; 1991 [cité 25 juin 2018]. p. 431–83. (Fatigue of Composite Materials; vol. 4)

  20. Palumbo, D., De Finis, R., Giuseppe Demelio, P., Galiettiet, U.: A new rapid thermographic method to assess the fatigue limit in GFRP composites. Compos. Part B. 103, 60–67 (2016)

    CAS  Google Scholar 

  21. Rajaneesh, A., Satrio, W., Chai, G.B., Sridhar, I.: Long-term life prediction of woven CFRP laminates under three point flexural fatigue. Compos. Part B. 91, 539–547 (2016)

    CAS  Google Scholar 

  22. Jegou, L., Marco, Y., Le Saux, V., Calloch, S.: Fast prediction of the Wöhler curve from heat build-up measurements on short Fiber reinforced Plastic. Int. J. Fatigue. 47, 259–267 (2013)

    CAS  Google Scholar 

  23. Marco, Y., Huneau, B., Masquelier, I., Le Saux, V., Charrier, P.: Prediction of fatigue properties of natural rubber based on the descriptions of the cracks population and of the dissipated energy. Polym. Test. 59, 67–74 (2017)

    CAS  Google Scholar 

  24. Serrano Abello, L., Marco, Y., Le Saux, V., Robert, G., Charrier, P.: Fast prediction of the fatigue behavior of short fiber reinforced thermoplastics from heat build-up measurements. Procedia Eng. 66, 737–745 (2013)

    Google Scholar 

  25. Masquelier, I., Marco, Y., Le Sauxa, V., Callocha, S., Charrier, P.: Thermal measurements on elastomeric materials: from the characterization of the dissipation gradients to the prediction of the fatigue properties. Procedia Eng. 66, 661–668 (2013)

    Google Scholar 

  26. Marco, Y., Masquelier, I., Le Saux, V., Charrier, P.: Fast prediction of the Wohler curve from thermal measurements for a wide range of NR and SBR. Rubber Chem Technol September. 90(3), 487–507 (2017)

    CAS  Google Scholar 

  27. Jain A, M Veas J, Straesser S, Van Paepegem W, Verpoest I, V. Lomov S .The Master SN curve approach – A hybrid multi-scale fatigue simulation of short fiber reinforced composites. Composites: Part A 2015

  28. Jain A, Van Paepegem W, Verpoest I, V Lomov S. A feasibility study of the master SN curve approach for short fiber reinforced composites. Int. J. Fatigue 2016; 91: 264–274

  29. Laribi, M.A., Tamboura, S., Fitoussi, J., Tiébi, R., Tcharkhtchi, A., Ben Dali, H.: Fast fatigue life prediction of short fiber reinforced composites using a new hybrid damage approach: application to SMC. Composites Part B: Engineering, Volume. 139(15), 155–162 (April 2018)

    CAS  Google Scholar 

  30. Jain A, M Veas J, Straesser S, Van Paepegem W, Verpoest I, V. Lomov S .The Master SN curve approach – A hybrid multi-scale fatigue simulation of short fiber reinforced composites. Composites: Part A 2015

  31. Guo, G., Fitoussi, J., Baptiste, D.: A sequential and biaxial tensile loading test to investigate the damage behaviour in a random short Fiber SMC composite. Anal. Compos. AMAC. 3, 41–42 (1995)

    Google Scholar 

  32. Guo, G., Fitoussi, J., Baptiste, D.: Optimisation of a Failure Criterion for the Short-Fiber Reinforced Composites Materials by the Finite Element Analysis Using a Damage Micromechanics Model, pp. 675–687. Peking University Press, Progress in Advanced Materials and Mechanics (1996)

    Google Scholar 

  33. G. Guo, J. Fitoussi, and D. Baptiste, Extension of Successive Iteration Method in the Homogenization of a Random Short-Fiber Reinforced Composite, Microstructures and Mechanical Properties of New Engineering Materials, Proc. 2nd IMMM’95, International Academic Publishers, 1995, p 15–21

  34. Guo, G., Fitoussi, J., Baptiste, D.: Determination of Tridimensional Failure Criterion at the Fiber/Matrix Interface at an Organic Matrix and Discontinuous Reinforced Composite, JNC9, pp. 213–222. J.P. Favre and A.Vaurin, Ed, AMAC, St. Etienne, France (1994)

    Google Scholar 

  35. Derrien, K., Fitoussi, J., Baptiste, D.: Prediction of the effective damage properties and failure properties of nonlinear anisotropic discontinuous reinforced composites. Comput. Methods Appl. Mech. Eng. 185, 93–107 (2000)

    Google Scholar 

  36. Le Pen, E., Baptiste, D., Hug, G.: Multi-scale fatigue behaviour Modelling of Al-Al2O3 short fibre composites. Int. J. Fatigue. 24, 205–214 (2002)

    Google Scholar 

  37. Jendli Z., Meraghni F., Fitoussi J., Baptiste D., «Multi-Scales Modelling of Dynamic Behavior for Discontinuous Fiber SMC Composites», Composites Science Technology −69 (2009) 97–103, 2009

    Google Scholar 

  38. Mori T., Tanaka K., «Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions » Acta Metall 1973; 21:571–4, 1973

    Google Scholar 

  39. Shirinbayan, M., Fitoussi, J., Meraghni, F., Surowiec, B., Bocquet, M., Tcharkhtchi, A.: High strain rate visco-damageable behavior of advanced sheet molding compound (A-SMC) under tension. Compos Part B Eng. 3670(82), 30–41 (2015)

    Google Scholar 

  40. M. Shirinbayan a, J. Fitoussi a, M. Bocquet a, F. Meraghni b, B. Surowiec c, A. Tcharkhtchi. Multi-scale experimental investigation of the viscous nature of damage in Advanced Sheet Molding Compound (A-SMC) submitted to high strain rates Composites Part B 115 (2017) 3e13

  41. Benveniste, Y.: A new approach to the application of Mori-Tanaka’s theory. Mech. Mater. 6, 147–157 (1987)

    Google Scholar 

  42. Mura T., Cheng P.C, The elastic field outside an ellipsoidal inclusion. J. Appl. Mech. 1977 : 591–594

  43. Eshelby J.D, The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Roy. Soc. London, A 241, 1957, p. 376–396

  44. Taya, M.: Mura T, on stiffness and strenght of an aligned short-fiber reinforced composite containing fiber-end cracks under uniaxial applied stress. J. Appl. Mech. 48, 361–367 (1981)

    Google Scholar 

  45. Morozov, E.V., Morozov, K.E.: Selvarajalu V, Damage model development for SMC composites. Compos. Struct. 62, 375–380 (2003)

    Google Scholar 

  46. Tamboura, S., Sidhom, H., Baptiste, H., Fitoussi, J.: Evaluation de la tenue en fatigue du composite SMC R42. Mater. Tech. 3–4 (2001)

  47. Shirinbayan, M., Fitoussi, J., Abbasnezhad, N., Meraghni, F., Surowiec, B., Tcharkhtchi, A.: Overall Mechanical Characterization of a Low Density Sheet Molding Compound (LD-SMC): Multi-Scale Damage Analysis and Strain Rate Effect. Composites Part B, Engineering (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ayari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayari, H., Fitoussi, J., Imaddahen, A. et al. Two Hybrid Approaches to Fatigue Modeling of Advanced-Sheet Molding Compounds (A-SMC) Composite. Appl Compos Mater 27, 19–36 (2020). https://doi.org/10.1007/s10443-019-09793-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-019-09793-3

Keywords

Navigation