Skip to main content
Log in

Modeling Thermal Expansion Behavior of 2.5 D C/SiC Composites in Air Oxidizing Environments between 400 °C and 800 °C

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A model, based on the oxidation kinetics model of unidirectional C/SiC composite (between 400 °C and 800 °C in air, P = 100 KPa), is developed to predict the coefficient of thermal expansion (CTE) of 2.5D C/SiC composites. It takes into account (i) the changes versus time and temperature of the geometry of the notch resulting from the consumption by oxidation of the carbon interphase and fiber, (ii) the accumulation of oxidation damage of the carbon interphase and fiber in C/SiC microcomposite (one single filament) versus temperature during heating, (iii) the multiscale analysis of CTE of 2.5D C/SiC composites. The CTE of 2.5D C/SiC composites in warp direction during heating in air oxidizing environment are evaluated and validated in comparison to experimental data. The results indicate that the predicted CTE of 2.5D C/SiC composites in warp direction agree well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview ☆[J]. Compos. Sci. Technol. 64(2), 155–170 (2004)

    Article  CAS  Google Scholar 

  2. Camus, G., Guillaumat, L., Baste, S.: Development of damage in a 2D woven C/SiC composite under mechanical loading: I. Mechanical characterization[J]. Compos. Sci. Technol. 56(12), 1363–1372 (1996)

    Article  CAS  Google Scholar 

  3. Bouazzaoui, R.E., Baste, S., Camus, G.: Development of damage in a 2D woven C/SiC composite under mechanical loading: II. Ultrasonic characterization[J]. Compos. Sci. Technol. 56(96), 1373–1382 (1996)

    Article  Google Scholar 

  4. Mei, H., Cheng, L.: Stress-dependence and time-dependence of the post-fatigue tensile behavior of carbon fiber reinforced SiC matrix composites[J]. Compos. Sci. Technol. 71(11), 1404–1409 (2011)

    Article  CAS  Google Scholar 

  5. Gowayed, Y., Abouzeida, E., Smyth, I., et al.: The role of oxidation in time-dependent response of ceramic–matrix composites[J]. Composites Part B. 76, 20–30 (2015)

    Article  CAS  Google Scholar 

  6. Yin, X., Cheng, L., Zhang, L., et al.: Oxidation behavior of 3D C/SiC composites in two oxidizing environments[J]. Compos. Sci. Technol. 61(7), 977–980 (2001)

    Article  CAS  Google Scholar 

  7. Cheng, L., Xu, Y., Zhang, L., et al.: Effect of heat treatment on the thermal expansion of 2D and 3D C/SiC composites from room temperature to 1400 °C[J]. Carbon. 10(2), 113–118 (2002)

    CAS  Google Scholar 

  8. Abueidda, D.W., Dalaq, A.S., Al-Rub, R.K.A., et al.: Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites[J]. Compos. Struct. 133, 85–97 (2015)

    Article  Google Scholar 

  9. Wang, Y., Zhang, L., Cheng, L., et al.: Tensile performance and damage evolution of a 2.5-D C/SiC composite characterized by acoustic emission[J]. Appl. Compos. Mater. 15(4–6), 183–188 (2008)

    Article  Google Scholar 

  10. Yu, L., Pan, B.: Experimental Study of tensile properties and deformation evolutions of 2D and 2.5D woven SiO2f/SiO2, composites using single-camera stereo-digital image correlation[J]. Composite Struct. (2018)

  11. Li, Y., Xiao, P., Luo, H., et al.: Fatigue behavior and residual strength evolution of 2.5D C/C-SiC composites[J]. J. Eur. Ceram. Soc. 36(16), 3977–3985 (2016)

    Article  CAS  Google Scholar 

  12. Lamouroux, F., Camus, G.: Oxidation effects on the mechanical properties of 2D woven C/SiC composites[J]. J. Eur. Ceram. Soc. 14(2), 177–188 (1994)

    Article  CAS  Google Scholar 

  13. Costello, J.A., Tressler, R.E.: Oxidation kinetics of silicon carbide crystals and ceramics: I, in dry oxygen[J]. J. Am. Ceram. Soc. 69(9), 674–681 (2010)

    Article  Google Scholar 

  14. Aparicio, M., Duran, A.: Infiltration of C/SiC composites with silica sol–gel solutions: part I. infiltration by dipping[J]. J. Mater. Res. 14(11), 4230–4238 (1999)

    Article  CAS  Google Scholar 

  15. Aparicio, M., Duran, A.: Infiltration of C/SiC composites with silica sol-gel solutions: part II. Infiltration under isostatic pressure and oxidation resistance[J]. J. Mater. Res. 14(11), 4239–4245 (1999)

    Article  CAS  Google Scholar 

  16. Besmann, T.M., Sheldon, B.W., Lowden, R.A., Stinton, D.P.: Vapor-phase fabrication and properties of continuous-filament ceramic composites[J]. Science. 253(5024), 1104–1109 (1991)

    Article  CAS  Google Scholar 

  17. Cheng, L., Xu, Y., Zhang, L., et al.: Oxidation behavior of C–SiC composites with a Si–W coating from room temperature to 1500°C[J]. Mater. Sci. Eng. A. 38(15), 2133–2138 (2001)

    Google Scholar 

  18. Chen, X., Sun, Z., Sun, J., et al.: Simulation of degraded properties of 2D plain woven C/SiC composites under preloading oxidation atmosphere[J]. Appl. Compos. Mater. 24(6), 1–21 (2017)

    Article  Google Scholar 

  19. Xu, Y., Zhang, P., Lu, H., et al.: Numerical modeling of oxidized C/SiC microcomposite in air oxidizing environments below 800 °C: microstructure and mechanical behavior[J]. J. Eur. Ceram. Soc. 35(13), 3401–3409 (2015)

    Article  CAS  Google Scholar 

  20. Zhang, Q., Cheng, L., Zhang, L., et al.: Thermal expansion behavior of carbon fiber reinforced chemical-vapor-infiltrated silicon carbide composites from room temperature to 1400°C[J]. Mater. Lett. 60(27), 3245–3247 (2006)

    Article  CAS  Google Scholar 

  21. Kumar, S., Kumar, A., Shukla, A., et al.: Investigation of thermal expansion of 3D-stitched C–SiC composites[J]. J. Eur. Ceram. Soc. 29(13), 2849–2855 (2009)

    Article  CAS  Google Scholar 

  22. KONG: Analytical model of elastic modulus and coefficient of thermal expansion for 2.5D C/SiC composite[J]. J. Wuhan Univ. Technol. (Mater. Sci. Ed.). 28(3), 494–499 (2013)

    Article  CAS  Google Scholar 

  23. Ai, S., Fu, H., He, R., et al.: Multi-scale modeling of thermal expansion coefficients of C/C composites at high temperature[J]. Mater. Des. 82, 181–188 (2015)

    Article  CAS  Google Scholar 

  24. Li, Z., Yin, X., Ma, T., et al.: Bending and thermal expansion properties of 2.5D C/SiC composites[J]. Mater. Trans. 52(12), 2165–2167 (2011)

    Article  CAS  Google Scholar 

  25. Sun, Z., Wang, Z., Song, Y.: Verification and prediction of elastic modulus of C/SiC composites under non-stress oxidation[J]. Acta Mater. Compos. Sin. 30(1), 172–179 (2013)

    CAS  Google Scholar 

  26. Zhang, J., Luan, X., Cheng, L., et al.: Damage evolution in 3D C_f/SiC composites in stressed oxidation environments[J]. J. Chin. Ceram. Soc. 38(5), 799–804 (2010)

    CAS  Google Scholar 

  27. Sun, Z., Shao, H., Chen, X., et al.: Analysis of residual performance of UD-CMC in oxidation atmosphere based on a notch-like oxidation model[J]. Appl. Compos. Mater. 23(5), 1–20 (2016)

    Google Scholar 

  28. Lamouroux, F., Camus, G., Thébault, J.: Kinetics and mechanisms of oxidation of 2D woven C/SiC composites: I, experimental approach[J]. J. Am. Ceram. Soc. 77(8), 2049–2057 (2010)

    Article  Google Scholar 

  29. Halbig, M.C., JD, M.G.-C., Eckel, A.J., Brewer, D.N.: Oxidation kinetics and stress effects for the oxidation of continuous carbon fibers within a microcracked C/SiC ceramic matrix composite[J]. J. Am. Ceram. Soc. 91(2), 519–526 (2008)

    Article  CAS  Google Scholar 

  30. Naslain, R., Lamon, J., Pailler, R., et al.: Micro/minicomposites: a useful approach to the design and development of non-oxide CMCs[J]. Compos. Part A Appl. Sci. Manuf. 30(4), 537–547 (1999)

    Article  Google Scholar 

  31. Sun, Z., Kong, C., Niu, X., et al.: Optimization and reliability analysis of 2.5D C/SiC composites turbine Stator vane[J]. Appl. Compos. Mater. 21(5), 789–803 (2014)

    Article  CAS  Google Scholar 

  32. Radcliffe, D.J., Rosenberg, H.M.: The thermal conductivity of glass-fibre and carbon-fibre/epoxy composites from 2 to 80 k[J]. Cryogenics. 22(5), 245–249 (1982)

    Article  CAS  Google Scholar 

  33. Sauder, C., Lamon, J., Pailler, R.: Thermomechanical properties of carbon fibers at high temperatures (up to 2000 °C)[J]. Compos. Sci. Technol. 62(4), 499–504 (2002)

    Article  CAS  Google Scholar 

  34. Pradere, C., Sauder, C.: Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300–2500 K)[J]. Carbon. 46(14), 1874–1884 (2008)

    Article  CAS  Google Scholar 

  35. Pradere, C., Batsale, J.C.: J.M. Goyhénèche, et al. thermal properties of carbon fibers at very high temperature[J]. Carbon. 47(3), 737–743 (2009)

    Article  CAS  Google Scholar 

  36. Xu, Y., Ren, S., Zhang, W.: Thermal conductivities of plain woven C/SiC composite: micromechanical model considering PyC interphase thermal conductance and manufacture-induced voids[J]. Compos. Struct. (2018) S0263822317333846

  37. Tsang, D.K.L., Marsden, B.J., Fok, S.L., et al.: Graphite thermal expansion relationship for different temperature ranges[J]. Carbon. 43(14), 2902–2906 (2005)

    Article  CAS  Google Scholar 

  38. Shen, S.: Prediction for coefficient of thermal expansion of ceramic matrix composites based on XCT Technology[D]. Nanjing University of Aeronautics and Astronautics (2017)

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China, the National Natural Science Foundation of China [grant number 51675266]; the Aeronautical Science Foundation of China [grant number 2014ZB52024]; the Postgraduate Research & Practice Innovation Program of Jiangsu Province [grant number KYCX18_0314]; the Fundamental Research Funds for the Central Universities [grant number NJ20160038]; and the Jiangsu Province Key Laboratory of Aerospace Power System [grant number CEPE2019004] are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihui Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Sun, Z., Chen, P. et al. Modeling Thermal Expansion Behavior of 2.5 D C/SiC Composites in Air Oxidizing Environments between 400 °C and 800 °C. Appl Compos Mater 27, 861–875 (2020). https://doi.org/10.1007/s10443-019-09792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-019-09792-4

Keywords

Navigation