Skip to main content
Log in

Support for Decision Making in Design of Composite Laminated Structures. Part 1: Parametric Knowledge Model

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The design process of laminated composites faces two challenges: the engineer designs the product and its morphology, but also, simultaneously, the material. The number of design solutions can be huge since the solution space is very large. Standard CAE systems (CAD, Finite Element Simulation) do not offer to the designer an approach to explore design spaces easily handling design parameters that are intrinsic to the laminate structures: number of plies, layers’ constitutive laws, viscoelastic capacity of the matrix and volume fraction of fibers. This paper provides a new model of behavior making explicit these design parameters. This Parametric and reduced Behavior Model (PRBM) allows engineers to make rapid simulations of the product they are creating. Integrated in a meta-model of Knowledge, it is combined to usual specific knowledge that are typically the domain of composite experts and manufacturing experts. Our PRBM is made from a separated numerical method, next enabling (1) a multiscale approach: the engineer can implement reasoning either at the scale of the fiber, or at the scale of the ply, at the scale of the plies interfaces, at the scale of the lamination or at the scale of the structure, or, (2) a multiphysical approach: the engineer can independently manage the mechanical effect of each ply and each interface, either in static or dynamic cases; in the latter, the creeping behavior can be considered. Two simple cases are presented to illustrate the relevance of the PRBM when simulating composite structures: one under a static load and the having a dynamic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

E :

Young’s modulus (MPa)

E f :

Fiber Young’s modulus (MPa)

E m :

Matrix Young’s modulus (MPa)

E l :

Young’s modulus of the ply in the direction of the fibers (MPa)

E t :

Young’s modulus of the ply in a direction transversal to the fiber direction (MPa)

F y , F z :

External forces (N)

F(ω):

Force as a function of frequency (N)

B :

Body force

G :

Shear modulus (MPa)

v :

Poisson’s ratio

l :

Length (mm)

h :

Height (mm)

w :

Width (mm)

u:

Displacement in direction x

v:

Displacement in direction y

w:

Displacement in direction z

ε :

Strain tensor

σ :

Stress Tensor (Pa)

σ ij :

Stress tensor element (Pa)

F 0 :

Objective function

ς, ξ, ψ :

(Weights)

\( {\mathbf{\mathcal{L}}}_{\boldsymbol{max}} \) :

Maximum deformation to the direction y

\( {\boldsymbol{U}}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{z},{\boldsymbol{p}}_{\mathbf{1}},{\boldsymbol{p}}_{\mathbf{2}},\bullet \bullet \bullet, {\boldsymbol{p}}_{\boldsymbol{d}}} \) :

Approximation of displacement field (mm)

U(x, y, z, p 1, p 1, , p d):

Displacement field as a function of given parameters (mm)

C :

Tensor of material properties in local coordinates

n :

Number of enrichment modes in PGD sense

\( \overline{\boldsymbol{C}} \) :

Tensor of material properties in global coordinates

\( \overline{\boldsymbol{C}}\left({\boldsymbol{p}}_{\mathbf{1}}\right),\overline{\boldsymbol{C}}\left({\boldsymbol{p}}_{\mathbf{2}}\right),\overline{\boldsymbol{C}}\left({\boldsymbol{p}}_{\mathbf{3}}\right),\overline{\boldsymbol{C}}\left({\boldsymbol{p}}_{\mathbf{4}}\right) \) :

Tensor of material properties at plies 1, 2, 3, 4 in global coordinates

C int :

Tensor of material properties at the interfaces

D :

Transformation matrix

ρ :

Density (kg/m3)

ρ f :

Fiber density

ρ m :

Resin density

Ω :

Geometric domain

θ i :

Fiber orientation of ply i (degrees)

V f :

Fiber volume fraction (%)

G 0 :

Short term shear modulus (GPa)

G :

Long-term shear modulus (GPa)

α :

Fractional derivative order

τ :

Decay time (s)

X, Y, Z, P1, P2, P3, P4, P5, P6, P7:

PGD functions

x,y,z,p 1 ,p 2 ,p 3 ,p 4 ,p 5 ,p 6 ,p 7 :

PGD domains

T max :

Maximum twist

References

  1. Bassam, E.S., Hallett, S.R.: Multiscale surrogate modelling of the elastic response of thick composite structures with embedded defects and features. Compos. Struct. Compos. Struct. 200, 781–798, Elsevier (2018). https://doi.org/10.1016/j.compstruct.2018.05.078

    Article  Google Scholar 

  2. Beaumont, P.W.R.: On the problems of cracking and the question of structural integrity of engineering. Compos. Mater. Appl. Compos. Mater. 21(1), 5–43, Springer (2014). https://doi.org/10.1007/s10443-013-9356-1

    Article  Google Scholar 

  3. Bogdanor, M., Oskay, C., Clay, S.: Multiscale modeling of failure in composites under model parameter uncertainty. Comput. Mech. 56(3), 389–404, Springer (2015). https://doi.org/10.1007/s00466-015-1177-7

    Article  Google Scholar 

  4. Bognet, B., Bordeu, F., Chinesta, F., Leygue, A., Poitou, A.: Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput. Methods Appl. Mech. Eng. 201–204, 1–12 (2012). https://doi.org/10.1016/j.cma.2011.08.025

    Article  Google Scholar 

  5. Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Methods Eng. 9, 87–140 (2002). https://doi.org/10.1007/BF02736649

    Article  Google Scholar 

  6. Carrera, E., Pagani, A.: Multi-line enhanced beam model for the analysis of laminated composite structures. Compos. Part B Eng. 57, 112–119 (2014). https://doi.org/10.1016/j.compositesb.2013.09.046

    Article  Google Scholar 

  7. Chinesta, F., Leygue, A., Bordeu, F., Aguado, J.V., Cueto, E., Gonzalez, D., Alfaro, I., Ammar, A., Huerta, A.: PGD-based computational Vademecum for efficient design, optimization and control. Archives of Computational Methods in Engineering. 20(1), 31–59 (2013, Springer). https://doi.org/10.1007/s11831-013-9080-x

    Article  Google Scholar 

  8. Darko, Ivančević, Smojver, I.: Explicit multiscale modelling of impact damage on laminated composites – part i: validation of the micromechanical model. Compos. Struct 145, Elsevier, (2016). doi:https://doi.org/10.1016/j.compstruct.2016.02.048

  9. De Faria, A.R.: Optimization of composite structures under multiple load cases using a discrete approach based on lamination parameters. Int. J. Numer. Methods Eng. 104(9), 827–843, International Journal for Numerical method in Engineering, Wiley (2015). https://doi.org/10.1002/nme.4941

    Article  Google Scholar 

  10. Fontecha Dulcey, G., Fischer, X., Joyot, P.: An experiment-based method for parameter identification of a reduced multiscale parametric viscoelastic model of a laminated composite beam. Multiscale Multidiscip. Model. Exp. Des. (2018a). https://doi.org/10.1007/s41939-018-0018-8

  11. Fontecha Dulcey, G., Fischer, X., Joyot, P., Fadel G.: Support for decision making in Design of Composite Laminated Structures; part 2: reduced parametric model-based optimization. Springer Nature (2018b)

  12. Galiotis C.P.: Interfacial damage modelling of composites, pp. 33–64, A. in Multi-Scale Modelling of Composite Material Systems 1st Edition, Soutis C., Beaumont P W R Eds., Woodhead Publishing ISBN: 9781855739369, (2005)

  13. Ghiasi, H., Pasinin, D., Lessard, L.: Optimum stacking sequence design of composite materials part I: constant stiffness design. Compos. Struct. 90(1), 1–11, Elsevier (2009). https://doi.org/10.1016/j.compstruct.2009.01.006

    Article  Google Scholar 

  14. Hosseini Kordkheili, S.A., Toozandehjani, H., Soltani, Z.: A progressive multi-scale fatigue model for life prediction of laminated composites. J. Compos. Mater. 51(20), 2949–2960, Sage (2017). https://doi.org/10.1177/0021998317709610

    Article  Google Scholar 

  15. Jeong Sik, K., Arronche, L., Farrugia, A., Muliana, A., La Saponara, V.: Multi-scale modeling of time-dependent response of smart sandwich constructions. Compos. Struct. 93(9), 2196–2207, Elsevier (2011). https://doi.org/10.1016/j.compstruct.2011.03.0062011

    Article  Google Scholar 

  16. Kwon, Y.W., Allen, D.H., Talreja, R.: Multiscale Modeling and Simulation of Composite Materials and Structures. Springer, New York (2008)

    Book  Google Scholar 

  17. Ladevèze, P.: Multiscale modelling and computational strategies for composites. Int. J. Num. Method Eng. 60(1), 233–253, Wiley (2004). https://doi.org/10.1002/nme.960

    Article  Google Scholar 

  18. Macquart, T., Maes, V., Bordogna, M.T., Pirrera, A., Weaver, P.M.: Optimisation of composite structures – enforcing the feasibility of lamination parameter constraints with computationally-efficient maps. Compos. Struct. 192, 605–615 (2018). https://doi.org/10.1016/j.compstruct.2018.03.049

    Article  Google Scholar 

  19. Llorca, J.L., Gonzalez, C., Molina-Aldareguia, J., Lopes, C.S.: Multiscale modeling of composites: toward virtual testing and beyond. J. Min. Metals Mater. Soc. 65(2), 1–11 (2012). https://doi.org/10.1007/s11837-012-0509-8

    Google Scholar 

  20. Masoumi, S., Salehi, M., Akhlaghi, M.: Nonlinear viscoelastic analysis of laminated composite plates – a multi scale approach, Int. J. Recent Adv. Mech. Eng. (IJMECH) 2 (2), (2013)

  21. McCartney, L.N: Multi-scale predictive modelling of cracking in laminate composites, pp. 65–98, A. in Multi-Scale Modelling of Composite Material Systems 1st Edition, Soutis C., Beaumont P W R Eds., Woodhead Publishing. ISBN: 9781855739369, (2005)

  22. Mitsunori, M., Sugiyamat, Y.: Optimum design of laminated composite plates using lamination parameters. AIAA J. 31(5), 921–922 (1993). https://doi.org/10.2514/3.49033

    Article  Google Scholar 

  23. Monte, S.M.C., Infante, V., Madeira, J.F.A., Moleiro, F.: Optimization of fibers orientation in a composite specimen. Mech. Adv. Mater. Struct. 24(5), 410–416, Talyor and Francis (2017). https://doi.org/10.1080/15376494.2016.1191099

    Article  Google Scholar 

  24. Prulière, E., Chinesta, F., Ammar, A.: On the deterministic solution of multidimensional parametric models using the proper generalized decomposition. Math. Comput. Simul. 81, 791–810 (2010). https://doi.org/10.1016/j.matcom.2010.07.015

    Article  Google Scholar 

  25. Ranaivomiarana N., Irisarri F.X., Bettebghor D., Desmorat B., Concurrent optimization of material spatial distribution and material anisotropy repartition for two-dimensional structures. Continuum Mech. Thermodynam. 1–14, , Springer, (2018). doi:https://doi.org/10.1007/s00161-018-0661-7

  26. Reddy, J.N. (ed.): Mechanics of composite materials. Springer Netherlands, Dordrecht (1994)

    Google Scholar 

  27. Sonmez, F.O.: Optimum design of composite structures: a literature survey (1969–2009). J. Reinforced Plastics Compos. 36(1), 3–39 (2017, Sage Journals). https://doi.org/10.1177/0731684416668262

    Article  Google Scholar 

  28. Soutis, C., Beaumont, P.W.R.: Multi-scale modelling of composite material systems 1st Edition, Woodhead Publishing. ISBN: 9781855739369, (2005a)

  29. Soutis C., Beaumont P.W.R.: Multi-scale modelling of composite material systems: the art of predictive damage modelling, Woodhead, (2005b)

  30. Wang C.H.: Progressive multi-scale modelling of composite laminates, pp. 259–277, A. in Multi-Scale Modelling of Composite Material Systems 1st Edition, Soutis C., Beaumont P W R Eds., Woodhead Publishing, , ISBN: 9781855739369, (2005)

  31. Xinxing, T.X.: Wenjie Ge, Yonghong Zha, optimal fiber orientation and topology design for compliant mechanisms with fiber-reinforced composites. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 231(12), 2302–2312 (2017). https://doi.org/10.1177/0954406216631783

    Article  Google Scholar 

  32. Zhao, J., Xueling, F., Sun, Q.: Stacking sequence optimization of composite laminates for maximum buckling load using permutation search Algorithm. Compos. Struct. 121, 225–236, Elsevier (2015). https://doi.org/10.1016/j.compstruct.2014.10.031

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Fontecha Dulcey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontecha Dulcey, G., Fischer, X., Joyot, P. et al. Support for Decision Making in Design of Composite Laminated Structures. Part 1: Parametric Knowledge Model. Appl Compos Mater 26, 643–662 (2019). https://doi.org/10.1007/s10443-018-9741-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-018-9741-x

Keywords

Navigation