Skip to main content
Log in

Control of Braid Pattern on Every Side of a Braided Composite Part Produced by Asymmetrical Braiding Process

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Prediction and control of braid angle in braided composites is of great importance. Especially in producing new braided composite like braided lattice and braided actuator, controlling of braid angle in each point of the part is of great importance. This paper presents a method for controlling the braid angle on every side of a flat mandrel with the help of an elliptical guide ring to be added to the braiding machine. At first applicability of this elliptical guide ring is demonstrated by experiments and numerical simulations. To develop this method, first the theoretical relations are formulated. Once verified with experimental results, these relations are then used to develop a procedure for calculation of guide ring dimensions, take-up speed and mandrel eccentricity that yield the desired braid angles. In the end, these calculations are performed for several arbitrary angles and the results are reproduced by experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shekarchizadeh, N., Abedi, M.M., Jafari Nedoushan, R.: Prediction of elastic behavior of plain weft-knitted composites. J. Reinf. Plast. Compos. 35, 1613–1622 (2016)

    Article  Google Scholar 

  2. Braley, M., Dingeldein, M.: Advancements in braided materials technology. A&P Technology, Inc., 46th International SAMPE Symposium, Long Beach, CA. pp. 2445–2454. (2001)

  3. Branscomb, D., Beale, D., Broughton, R.: New directions in braiding. J. Eng. Fiber Fabr. 8(2), 11–24 (2013)

    Google Scholar 

  4. Cagri, A., Carey, J.: 2D braided composites: a review for stiffness critical applications. Compos. Struct. 85, 43–58 (2008)

    Article  Google Scholar 

  5. Wang, C., Roy, A., Chen, Z., Silberschmidt, V.V.: Braided textile composites for sports protection: Energy absorption and delamination in impact modelling. Mater. Des. 136, 258–269 (2017)

    Article  Google Scholar 

  6. Rawal, A., Potluri, P., Steele, C.: Geometrical modeling of the yarn paths in three-dimensional braided structures. J. Ind. Text. 35(115), 115–135 (2005)

    Article  Google Scholar 

  7. Omeroglu, S.: The effect of braiding parameters on the mechanical properties of braided ropes. Fibres Text. East. Eur. 14, 53–57 (2006)

    Google Scholar 

  8. Chen, J., Sanchez, S.B., McBride, T.M.: Sensitivity of mechanical properties to braid misalignment in triaxial braid composite panels. J. Compos. Technol. Res. 20(1), 13–17 (1998)

    Article  Google Scholar 

  9. Gao, Y.T., Ko, F.K., Hu, H.: Integrated design for manufacturing of braided preforms for advanced composites part I: 2D braiding. Appl. Compos. Mater. 20, 1007–1023 (2013)

    Article  Google Scholar 

  10. Gao, Y.T., Ko, F.K., Hu, H.: Integrated design for manufacturing of braided preforms for advanced composites part II: 3D braiding. Appl. Compos. Mater. 20, 1065–1075 (2013)

    Article  Google Scholar 

  11. Pickett, A.K., Sirtautas, J., Erber, A.: Braiding Simulation and Prediction of Mechanical Properties. Appl. Compos. Mater. 16, 345–364 (2009)

    Article  Google Scholar 

  12. Gurley, A., Beale, D., Broughton, R., Branscomb, D.: The design of optimal lattice structures manufactured by maypole braiding. J. Mech. Des. 137 (2015)

  13. Branscomb, D., Beale, D., Broughton, R.: New directions in braiding. J. Eng. Fiber. Fabr. 8(2) (2013)

  14. Wang, B., McDaid, A., Biglari-Abhari, M., Giffney, T., Aw, K.: A bimorph pneumatic bending actuator by control of fiber braiding angle. Sensors Actuators A. 257, 173–184 (2017)

    Article  Google Scholar 

  15. Wang, B., McDaid, A., Giffney, T., Biglari-Abhari, M., Aw, K.C.: Design, modelling and simulation of soft grippers using new bimorph pneumatic bending actuators. Cogent Eng. 1285482, 4 (2017)

    Google Scholar 

  16. Shanahan, C., Tofail, S.A.M., Tiernan, P.: Viscoelastic braided stent: Finite element modelling and validation of crimping behaviour. Mater. Des. 121, 143–153 (2017)

    Article  Google Scholar 

  17. Rebelo, R., Vila, N., Fangueiro, R., Carvalho, S., Rana, S.: Influence of design parameters on the mechanical behavior and porosity of braided fibrous stents. Mater. Des. 86, 237–247 (2015)

    Article  Google Scholar 

  18. Potluri, P., Rawal, A., Rivaldi, M., et al.: Geometrical modelling and control of a triaxial braiding machine for producing 3D preforms. Compos. A Appl. Sci. Manuf. 34, 481–492 (2003)

    Article  Google Scholar 

  19. Baalbergen, E., et al.: Innovating the overbraiding design process to optimise the development of composite aircraft structural components. (2012)

  20. Na, W.-J., et al.: Prediction of the braid pattern on arbitrary-shaped mandrels using the minimum path condition. Compos. Sci. Technol. 91, 30–37 (2014)

    Article  Google Scholar 

  21. Akkerman, R., Villa Rodriguez, B.: Braiding simulation for RTM preforms. (2006)

  22. Akkerman, R., Rodriguez, V., Hadir, L.: Braiding simulation and slip evaluation for arbitrary mandrels. (2007)

  23. Nishimoto, H., Ohtani, A., Nakai, A., Hamada, H.: Generation and prediction methods for circumferential distribution changes in the braiding angle on a cylindrical braided fabric, Proc. IMechE Vol. 224 Part L: J. Materials: Design and Applications (2015)

  24. Long, A.: Process modelling for liquid moulding of braided preforms. Compos. A: Appl. Sci. Manuf. 32(7), 941–953 (2001)

    Article  Google Scholar 

  25. Fouladi, A., Jafari Nedoushan, R.: Prediction and optimization of yarn path in braiding of mandrels with flat faces. J Compos Mater (2017)

  26. Hajrasouliha, J., Jafari Nedoushan, R., Sheikhzadeh, M., Nal, W., Yu, W.R.: Theoretical and experimental study of braid pattern in mandrels with arbitrary cross-sections. J Compos Mater 0021998318773460

Download references

Acknowledgements

This work was partly supported by the NRF grant funded by the Ministry of Science, ICT & Future Planning (MSIP) (NO. NRF-2015R1A5A1037627) for which the last author of this paper (W.-R. Yu) feels grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Jafari Nedoushan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouladi, A., Jafari Nedoushan, R., Hajrasouliha, J. et al. Control of Braid Pattern on Every Side of a Braided Composite Part Produced by Asymmetrical Braiding Process. Appl Compos Mater 26, 479–492 (2019). https://doi.org/10.1007/s10443-018-9706-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-018-9706-0

Keywords

Navigation