Skip to main content
Log in

Effect of Nesting in Laminates on the Through-Thickness Permeability of Woven Fabrics

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The layer nesting phenomenon of multilayer fabric has a great influence on the through-thickness permeability, which is a key parameter for the simulation of the through-thickness LCM (Liquid Composite Moldling) processes. In this paper, based on the analyses of the formation reason and characterization parameters of layer nesting, the geometry models of fabric unit-cells with nesting are established. The through-thickness flow in the unit-cell is analyzed to built the governing equations of the resin flow. The inter-yarn and intra-yarn regions of the unit-cell model are discretized uniformly, then the governing equations of the through-thickness flow are numerically solved based on Adams-Bashforth scheme and Chorin projection method, so the through-thickness flow parameters is obtained and the through-thickness permeability of the fabric with nesting can be predicted. The verification of the above method is implemented by comparisons with the available experimental results. A series of simulation experiments are carried out to investigate the nesting behaviors under different layer shifts, and the effects of nesting on the total thickness and through-thickness permeability of woven fabric are researched in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Antonelli, D., Farina, A.: Resin transfer moulding: mathematical modelling and numerical simulations. Compos. Part A. 30(12), 1367–1385 (1999)

    Article  Google Scholar 

  2. Lam, Y.C., Joshi, S.C., Liu, X.L.: Numerical simulation of the mould-filling process in resin-transfer moulding. Compos. Sci. Technol. 60, 845–855 (2000)

    Article  CAS  Google Scholar 

  3. Belov, E.B., Lomov, S.V., Verpoest, I., Peters, T., Roose, D., Parnas, R.S., Hoes, K., Sol, H.: Modelling of permeability of textile reinforcements: lattice Boltzmann method. Compos. Sci. Technol. 64, 1069–1080 (2004)

    Article  Google Scholar 

  4. Kuentzer, N., Simacek, P., Advani, S.G., Walsh, S.: Permeability characterization of dual scale fibrous porous media. Compos. Part A. 37, 2057–2068 (2006)

    Article  Google Scholar 

  5. Louis, M., Huber, U.: Investigation of shearing effects on the permeability of woven fabrics and implementation into LCM simulation. Compos. Sci. Technol. 63(14), 2081–2088 (2003)

    Article  CAS  Google Scholar 

  6. Gokce, A., Advani, S.: Permeability estimation with the method of cells. J. Compos. Mater. 35, 713–728 (2001)

    Article  Google Scholar 

  7. Verleye, B., Croce, R., Griebel, M., Klitz, M., Lomov, S.V., Morren, G., Sol, H., Verpoest, I., Roose, D.: Permeability of textile reinforcements: simulation, influence of shear and validation. Compos. Sci. Technol. 68, 2804–2810 (2008)

    Article  CAS  Google Scholar 

  8. Zuo-Rong Chen, L., Ye, M.L.: Permeability predictions for woven fabric preforms. J. Compos. Mater. 44(13), 1569–1586 (2010)

    Article  Google Scholar 

  9. Drapiera, S., Monattea, J., Elbouazzaouia, O., Henrat, P.: Characterization of transient through- thickness permeabilities of non crimp new concept (NC2) multiaxial fabrics. Compos. Part A. 36, 877–892 (2005)

    Article  Google Scholar 

  10. Scholz, S., Gillespie Jr., J.W., Heider, D.: Measurement of transverse permeability using gaseous and liquid flow. Compos. Part A. 38, 2034–2040 (2007)

    Article  Google Scholar 

  11. Li, M., Wang, S.-K., Gu, Y.-Z., Li, Y.-X., Potter, K., Zhang, Z.-G.: Evaluation of through-thickness permeability and the capillary effect in vacuum assisted liquid molding process. Compos. Sci. Technol. 72, 873–878 (2012)

    Article  CAS  Google Scholar 

  12. Sas, H.S., Wurtzel, E.B., Simacek, P., Advani, S.G.: Effect of relative ply orientation on the through-thickness permeability of unidirectional fabrics. Compos. Sci. Technol. 96, 116–121 (2014)

    Article  CAS  Google Scholar 

  13. Yun, M., Carella, T., Simacek, P., Advani, S.: Stochastic modeling of through the thickness permeability variation in a fabric and its effect on void formation during vacuum assisted resin transfer molding. Compos. Sci. Technol. 149, 100–107 (2017)

    Article  CAS  Google Scholar 

  14. Markicevic, B., Papathanasiou, T.D.: An explicit physics-based model for the transverse permeability of multi-material dual porosity fibrous media. Transp. Porous Media. 53, 265–280 (2003)

    Article  Google Scholar 

  15. Xiao, X., Zeng, X., Long, A., Lin, H., Clifford, M., Saldaeva, E.: An analytical model for through-thickness permeability of woven fabric. Text. Res. J. 82(5), 492–501 (2012)

    Article  CAS  Google Scholar 

  16. Xiao, X., Endruweit, A., Zeng, X., Hu, J., Long, A.: Through-thickness permeability study of orthogonal and angle-interlock woven fabrics. J. Mater. Sci. 50, 1257–1266 (2015)

    Article  CAS  Google Scholar 

  17. Nabovati, A., Llewellin, E.W., Sousa, A.C.M.: Through-thickness permeability prediction of three-dimensional multifilament woven fabrics. Compos. Part A. 41, 453–463 (2010)

    Article  Google Scholar 

  18. Lomov, S.V., Verpoest, I., Peeters, T., Roose, D., Zako, M.: Nesting in textile laminates: geometrical modelling of the laminate. Compos. Sci. Technol. 63(7), 993–1007 (2003)

    Article  Google Scholar 

  19. Zeng, X., Endruweit, A., Brown, L.P., Long, A.C.: Numerical prediction of in-plane permeability for multilayer woven fabrics with manufacture- induced deformation. Compos. Part A. 77, 266–274 (2015)

    Article  Google Scholar 

  20. Hoes, K., Dinescu, D., Sol, H., Parnas, R.S., Lomov, S.: Study of nesting induced scatter of permeability values in layered reinforcement fabrics. Compos. Part A. 35(12), 1407–1418 (2004)

    Article  Google Scholar 

  21. Yang, B., Wang, S., Tang, Q.: Geometry modeling and permeability prediction for textile preforms with nesting in laminates. Polym. Compos. (2017). https://doi.org/10.1002/pc.24526

  22. Fang, L., Jiang, J., Wang, J., Wang, J., Deng, C., Li, D., Liu, F.: Effect of layer shift on the out-of-plane permeability of 0°/90° noncrimp fabrics. J. Reinf. Plast. Compos. 33(22), 2073–2094 (2014)

    Article  CAS  Google Scholar 

  23. Fang, L., Jiang, J., Wang, J., Deng, C.: Effect of nesting on the out-of-plane permeability of unidirectional fabrics in resin transfer molding. Appl. Compos. Mater. 22, 231–249 (2015)

    Article  Google Scholar 

  24. Song, Y.S., Heider, D., Youn, J.R.: Statistical characteristics of out-of-plane permeability for plain-woven structure[J]. Polym. Compos. 30(10), 1465–1472 (2010)

    Article  Google Scholar 

  25. Yang, B., Jin, T., Zheng, L., Bo, Y., Jin, T., Long, Z.: Permeability prediction for textile preform with micro-meso dual-scale unit cell. Acta Materiae Compositae Sinica. 30(5), 209–217 (2013). (In Chinese)

    CAS  Google Scholar 

  26. Gebart, B.R.: Permeability of unidirectional reinforcements for RTM. J. Compos. Mater. 26, 1100–1133 (1992)

    Article  CAS  Google Scholar 

  27. Guo, Y.W., He, Y.N.: Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of oldroyd fluids of order one. Discrete and Continuous Dynamical Systems-Series B. 20(8), 2583–2609 (2015)

    Article  Google Scholar 

  28. Xiao, X., Hu, J., Hua, T., Zeng, X., Long, A.: Through-thickness air permeability of woven fabric under low pressure compression. Text. Res. J. 85(16), 1732–1742 (2015)

    Article  CAS  Google Scholar 

  29. Dai, F., Zhang, B., Shanyi, D.: Permeability prediction of fabric preform using homogenization method. Acta Materiae Compositae Sinica. 26(2), 90–93 (2009). (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgements

The presented work was supported by the National Natural Science Foundation of China (grant number 51605057); the Fundamental and Frontier Research Project of Chongqing (grant number cstc2016jcyjA0456); the China Postdoctoral Science Foundation (grant number 2016 M600721); and the Self-Planned Task of State Key Laboratory of Mechanical Transmission (grant number SKLMT-ZZKT-2016Z04), the Fundamental Research Funds for the Central Universities (grant number 106112017CDJXY110001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Wang, S. & Wang, Y. Effect of Nesting in Laminates on the Through-Thickness Permeability of Woven Fabrics. Appl Compos Mater 25, 1237–1253 (2018). https://doi.org/10.1007/s10443-018-9699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-018-9699-8

Keywords

Navigation