Meso-Scale Finite Element Analysis of Mechanical Behavior of 3D Braided Composites Subjected to Biaxial Tension Loadings

Abstract

In many engineering applications, 3D braided composites are designed for primary loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during service. In this paper, a unit-cell based finite element model is developed for assessment of mechanical behavior of 3D braided composites under different biaxial tension loadings. To predict the damage initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic damage model based on Murakami damage theory in conjunction with Hashin failure criteria and maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary conditions which never been attempted before is first executed to the unit-cell model to apply the biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile modulus and tensile strength are analyzed and discussed. The damage development of 3D braided composites under typical biaxial tension loadings is simulated and the damage mechanisms are revealed in the simulation process. The present study generally provides a new reference to the meso-scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Cai, D.A., Zhou, G.M., Wang, X.P., Li, C., Deng, J.: Experimental investigation on mechanical properties of unidirectional and woven fabric glass/epoxy composites under off-axis tensile loading. Polym. Test. 58, 142–152 (2017)

    CAS  Article  Google Scholar 

  2. 2.

    Quaresimin, M., Susmel, L., Talreja, R.: Fatigue behaviour and life assessment of composite laminates under multiaxial loadings. Int. J. Fatigue. 32(1), 2–16 (2010)

    CAS  Article  Google Scholar 

  3. 3.

    Makris, A., Ramault, C., Van Hemelrijck, D., Zarouchas, D., Lamkanfi, E., Van Paepegem, W.: An investigation of the mechanical behavior of carbon epoxy cross ply cruciform specimens under biaxial loading. Polym. Compos. 31(9), 1554–1561 (2010)

    CAS  Article  Google Scholar 

  4. 4.

    Chen, Z., Fang, G.D., Xie, J.B., Liang, J.: Experiment investigation on biaxial tensile strength of 3D in-plane braided C/C composites. J. Solid. Rocket. Technol. 38(2), 267–272 (2015)

    Google Scholar 

  5. 5.

    Li, L.Y., Meng, H.S., Wang, G.Y., Zhang, T., Xu, C.H., Ke, H.J.: Mechanical behaviors of the composites reinforced by non-crimp unidirectional carbon fiber fabrics under biaxial compression loading. J. Harb. Inst. Technol. 47(10), 20–24 (2015)

    CAS  Google Scholar 

  6. 6.

    Cichosz, J., Wehrkamp-Richter, T., Koerber, H., Hinterholzl, R., Camanho, P.P.: Failure and damage characterization of biaxial braided composites under multiaxial stress states. Compos. Part A. 90, 748–759 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    Rashedi, A., Sridhar, I., Tseng, K.J.: Fracture characterization of glass fiber composite laminate under experimental biaxial loading. Compos. Struct. 138, 17–29 (2016)

    Article  Google Scholar 

  8. 8.

    Cai, D.A., Tang, J., Zhou, G.M., Wang, X.P., Li, C., Silberschmidt, V.V.: Failure analysis of plain woven glass/epoxy laminates: comparison of off-axis and biaxial tension loadings. Polym. Test. 60, 307–320 (2017)

    CAS  Article  Google Scholar 

  9. 9.

    Correa, E., Barroso, A., Perez, M.D., Paris, F.: Design for a cruciform coupon used for tensile biaxial transverse tests on composite materials. Compos. Sci. Technol. 145, 138–148 (2017)

    CAS  Article  Google Scholar 

  10. 10.

    Wehrkamp-Richter, T., Hinterholzl, R., Pinho, S.T.: Damage and failure of triaxial braided composites under multi-axial stress states. Compos. Sci. Technol. 150, 32–44 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    Zhou, Y., Lu, Z.X., Yang, Z.Y.: Progressive damage analysis and strength prediction of 2D plain weave composites. Compos. Part B. 47, 220–229 (2013)

    CAS  Article  Google Scholar 

  12. 12.

    Lu, Z.X., Zhou, Y., Yang, Z.Y., Liu, Q.: Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension. Comput. Mater. Sci. 79, 485–494 (2013)

    Article  Google Scholar 

  13. 13.

    Zhang, D.T., Sun, Y., Wang, X.M., Chen, L.: Meso-scale finite element analyses of three-dimensional five-directional braided composites subjected to uniaxial and biaxial loading. J. Reinf. Plast. Compos. 34(24), 1989–2005 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    Wang, B.L., Fang, G.D., Liang, J., Wang, Z.Q.: Failure locus of 3D four-directional braided composites under biaxial loading. Appl. Compos. Mater. 19(3–4), 529–544 (2012)

    Article  Google Scholar 

  15. 15.

    Fang, G.D., Liang, J., Wang, B.L.: Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos. Struct. 89, 126–133 (2009)

    Article  Google Scholar 

  16. 16.

    Lu, Z.X., Xia, B., Yang, Z.Y.: Investigation on the tensile properties of three dimensional full five directional braided composites. Comput. Mater. Sci. 77, 445–455 (2013)

    Article  Google Scholar 

  17. 17.

    Zhang, C., Li, N., Wang, W.Z., Binienda, W.W., Fang, H.B.: Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model. Compos. Struct. 125, 104–116 (2015)

    Article  Google Scholar 

  18. 18.

    Kang, H.R., Shan, Z.D., Zang, Y., Liu, F.: Progressive damage analysis and strength properties of fiber-bar composites reinforced by three-dimensional weaving under uniaxial tension. Compos. Struct. 141, 264–281 (2016)

    Article  Google Scholar 

  19. 19.

    Zhang, C., Curiel-Sosa, J.L., Bui, T.Q.: A novel interface constitutive model for prediction of stiffness and strength in 3D braided composites. Compos. Struct. 163, 32–43 (2017)

    Article  Google Scholar 

  20. 20.

    Wang, R.Q., Zhang, L., Hu, D.Y., et al.: Progressive damage simulation in 3D four-directional braided composites considering the jamming-action-induced yarn deformation. Compos. Struct. 178, 330–340 (2017)

    Article  Google Scholar 

  21. 21.

    Zhang, C., Mao, C.J., Zhou, Y.X.: Meso-scale damage simulation of 3D braided composites under quasi-static axial tension. Appl. Compos. Mater. 24(5), 1179–1199 (2017)

    Article  Google Scholar 

  22. 22.

    Hashin, Z.: Failure criteria for unidirectional fiber composite. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  23. 23.

    Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber reinforced materials. Compos. Part A. 38(11), 2333–2341 (2007)

    Article  Google Scholar 

  24. 24.

    Murakami, S.: Mechanical modeling of material damage. ASME. J. Appl. Mech. 55, 280–286 (1988)

    Article  Google Scholar 

  25. 25.

    Zako, M., Uetsuji, Y., Kurashiki, T.: Finite element analysis of damaged woven fabric composite materials. Compos. Sci. Technol. 63(3–4), 507–516 (2003)

    CAS  Article  Google Scholar 

  26. 26.

    Chen, L., Tao, X.M., Choy, C.L.: On the microstructure of three-dimensional braided preforms. Compos. Sci. Technol. 59(3), 391–404 (1999)

    CAS  Article  Google Scholar 

  27. 27.

    Xu, K., Xu, X.: On the microstructure model of four-step 3D rectangular braided composites. Acta. Mater. Compos. Sin. 23(5), 154–160 (2006)

    Google Scholar 

  28. 28.

    Xia, Z.H., Zhang, Y.F., Ellyin, F.: A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40(8), 1907–1921 (2003)

    Article  Google Scholar 

  29. 29.

    Li, S.G.: Boundary conditions for unit cells from periodic microstructures and their implications. Compos. Sci. Technol. 68(9), 1962–1974 (2008)

    Article  Google Scholar 

  30. 30.

    Zhang, C., Curiel-Sosa, J.L., Bui, T.Q.: Comparison of periodic mesh and free mesh on the mechanical properties prediction of 3D braided composites. Compos. Struct. 159, 667–676 (2017)

    Article  Google Scholar 

  31. 31.

    Chamis, C.C.: Mechanics of composites materials: past, present and future. J. Compos. Technol. Res. 11(1), 3–14 (1989)

    CAS  Article  Google Scholar 

  32. 32.

    Wang, X.F., Wang, X.W., Zhou, G.M., Zhou, C.W.: Multi-scale analyses of 3D woven composite based on periodicity boundary conditions. J. Compos. Mater. 41, 1773–1788 (2007)

    CAS  Article  Google Scholar 

  33. 33.

    Xu, K., Xu, X.: Finite element analysis of mechanical properties of 3D five-directional braided composites. Mater. Sci. Eng. A. 487(1–2), 499–509 (2008)

    Article  Google Scholar 

  34. 34.

    Zhang, C., Xu, X.W.: Finite element analysis of 3D braided composites based on three unit-cells models. Compos. Struct. 98, 130–142 (2013)

    Article  Google Scholar 

  35. 35.

    Zhang, D.T., Chen, L., Wang, Y.J., et al.: Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model. J. Mater. Sci. 52, 6814–6836 (2017)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Research Project of Colleges and Universities in Jiangsu Province (17KJB130004), Natural Science Foundation of Jiangsu Province (BK20150479, BK20160786), Jiangsu Government Scholarship for Overseas Studies and Jiangsu University Study-abroad Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Curiel-Sosa, J.L. & Bui, T.Q. Meso-Scale Finite Element Analysis of Mechanical Behavior of 3D Braided Composites Subjected to Biaxial Tension Loadings. Appl Compos Mater 26, 139–157 (2019). https://doi.org/10.1007/s10443-018-9686-0

Download citation

Keywords

  • 3D braided composites
  • Unit-cell
  • Mechanical behavior
  • Biaxial tension
  • Meso-scale FEA