Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties

  • Mathias Kliem
  • Jan Høgsberg
  • Joachim Vanwalleghem
  • Angelos Filippatos
  • Stefan Hoschützky
  • Edith-Roland Fotsing
  • Christian Berggreen
Article
  • 29 Downloads

Abstract

Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.

Keywords

Composite structure Passive damping treatment Filament winding Vibration analysis Function integration 

Notes

Acknowledgements

Thanks to Prof. M. Gude and Prof. N. Modler from the Institute of Lightweight Engineering and Polymer Technology of TU Dresden for their kind cooperation in manufacturing the cylindrical specimens. The authors are also indebted to The Soundcoat Company, providing the viscoelastic material for the vibrational tests.

Compliance with Ethical Standards

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

References

  1. 1.
    ABAQUS: ABAQUS documentation. Dassault Systèmes, Providence (2017)Google Scholar
  2. 2.
    Adams, R.D., Bacon, D.G.C.: Effect of fibre orientation and laminate geometry on the dynamic properties of CFRP. J. Compos. Mater. 7, 402–428 (1973)CrossRefGoogle Scholar
  3. 3.
    Beards, C.F.: Engineering vibration analysis with application to control systems. Wiley - Technology and Engineering, 1st edn (1996)Google Scholar
  4. 4.
    Berthelot, J.M., Sefrani, Y.: Damping analysis of unidirectional glass and Kevlar fibre composites. Compos. Sci. Technol. 64, 1261–1278 (2004)CrossRefGoogle Scholar
  5. 5.
    Cortes, F., Elejabarrieta, M.J.: Structural vibration of flexural beams with thick unconstrained layer damping. Int. J. Solids Struct. 45, 5805–5813 (2008)CrossRefGoogle Scholar
  6. 6.
    Dang, H.X., Yang, F.L., XM, L., Yang, J.B.: Galloping characteristics of conductor accreted with Crescent-Shaped ice. Appl. Mech. Mater. 226–228, 158–161 (2012)CrossRefGoogle Scholar
  7. 7.
    Dannemann, M.: Zur vibroakustischen Auslegung von Faserverbund-Leichtbaustrukturen. Dissertation Technische Universitaet Dresden, 2012 (2012)Google Scholar
  8. 8.
    DIN EN 50341-1:2013-11: Overhead electrical lines exceeding AC 1 kV - Part 1: General requirements - Common specifications. Beuth Verlag 2013-11 (2013)Google Scholar
  9. 9.
    Ehrenstein, G.W., Riedel, G., Trawiel, P.: Praxis Der Thermischen Analyse Von Kunststoffen. Hanser-Verlag, Muenchen (1998)Google Scholar
  10. 10.
    Filippatos, A., Dannemann, M., Wohlfahrt, D., Modler, N.: Design of highly damped fibre-reinforced light-weight mast for automated storage systems in logistics. In: Proceedings of the 23nd international congress on sound and vibration ICSV 10.-14.July 2016, Athens (2016)Google Scholar
  11. 11.
    Fotsing, E.R., Sola, M., Ross, A., Ruiz, E.: Lightweight damping of composite sandwich beams: Experimental analysis. J. Compos. Mater. 47, 1501–1511 (2012)CrossRefGoogle Scholar
  12. 12.
    Gallimore, C.A.: (2006) Passive viscoelastic constrained layer damping application for a small aircraft landing gear system. Master thesis Virginia Polytechnic Institute and State University 30, 09 (2008)Google Scholar
  13. 13.
    Gohl, W., Spies, K.H.: Elastomere – Dicht- Und Konstruktionswerkstoffe: Gummitechnik, Richtlinien und Anwendungsbeispiele für Konstruktion und Praxis. Expert Verlag, 5th edn (2003)Google Scholar
  14. 14.
    Gurung, C.B., Yamaguchi, H., Yukino, T.: Identification and characterization of galloping of tsuruga test line based on Multi-Channel modal analysis of field data. J. Wind Eng. Ind. Aerodyn. 91, 903–924 (2003)CrossRefGoogle Scholar
  15. 15.
    Huang, C.Y., Tsai, J.L.: Characterizing vibration damping response of composite laminates containing silica nanoparticles and rubber particles. J. Compos. Mater. 49, 545–557 (2015)CrossRefGoogle Scholar
  16. 16.
    Hujare, P.P., Sahasrabudhe, A.D.: Experimental investigation of damping performance of viscoelastic material using constrained layer damping treatment. Procedia Materials Science, International conference on Advances in Manufacturing and Materials Engineering, Kuala Lumpur 2014(5), 726–733 (2014)Google Scholar
  17. 17.
    Klein, B: Leichtbau-Konstruktion: Berechnungsgrundlagen und Gestaltung. Springer Vieweg, 10th edn (2013)Google Scholar
  18. 18.
    Kliem, M., Høgsberg, J., Wang, Q., Dannemann, M.: Characterization of clay-modified thermoset polymers under various environmental conditions for the use in high-voltage power pylons. Adv. Mech. Eng. 9, 1–16 (2017)CrossRefGoogle Scholar
  19. 19.
    Kliem, M.: Data for: Damping investigation of cylindrical composite structures with enhanced damping properties. Mendeley Data  https://doi.org/10.17632/jxy3m76dg5.1(2017)
  20. 20.
    Kliem, M., Rueppel, M., Høgsberg, J, Berggreen, C: Damping properties of Nanoclay modified Glass and Aramid composites at low temperature and low frequencies submitted (2017)Google Scholar
  21. 21.
    Leibolt, M.F.: Noise control of an acoustic cavity coupled with a vibrating plate treated with a spatially varying constrained viscoelastic layer. Dissertation University of Maryland, 2009 (2009)Google Scholar
  22. 22.
    Lin, W: Creation and evaluation of Polymer/Multiwall carbon nanotube films for structural vibration control and strain sensing properties. Dissertation Florida International University, 2016.  https://doi.org/10.25148/etd.FIDC001208  https://doi.org/10.25148/etd.FIDC001208 (2016)
  23. 23.
    March, E.R., Hale, L.C.: Damping of flexural waves with imbedded viscoelastic materials. J. Vib. Acoust. 120, 188–193 (1998)CrossRefGoogle Scholar
  24. 24.
    Melo, J.D.D., Radford, D.W.: Time and temperature dependence of the viscoelastic properties of CFRP by dynamic mechanical analysis. Compos. Struct. 70, 240–253 (2005)CrossRefGoogle Scholar
  25. 25.
    Mengjin, W.: Conductor galloping and control measures. High Voltage Engineering 4, 1–22 (1990)Google Scholar
  26. 26.
    Moreira, R.A.S., Rodrigues, J.D.: Partial constrained viscoelastic damping treatment of structures: a modal strain energy approach. Int. J. Struct. Stab. Dyn. 6, 397–411 (2006)CrossRefGoogle Scholar
  27. 27.
    Pai, R., Lumsdaine, A., Parsons, M.: Design and fabrication of optimal constrained layer damping topologies. In: Proceedings vol. 5386, smart structures and materials: damping and isolation 2004.  https://doi.org/10.1117/12.540065 (2004)
  28. 28.
    Peters, S.: Composite filament winding. ASM International 1st Edn. (2011)Google Scholar
  29. 29.
    Qi, X., Zhao, X., Rose, J.L.: Ultrasonic guided wave simulation toolbox development for damage detection in composites. In: AIP conference proceedings 1211, 1095,  https://doi.org/10.1063/1/3362163 (2010)
  30. 30.
    Ruzicka, J.: Damping structural resonances using viscoelastic Shear-Damping mechanisms: Part I—design configurations. J. Eng. Ind. 83, 403–413 (1961)CrossRefGoogle Scholar
  31. 31.
    Sasikumar, K.S.K.: Vibration control of Beam with composite constrained layer treatment. International Journal of Latest Trends in Engineering and Technology 5, 176–184 (2015)Google Scholar
  32. 32.
    Skinner, M.L.: Trends, advances and innovations in filament winding. Reinf. Plast. 50, 28–33 (2006)CrossRefGoogle Scholar
  33. 33.
    Skouboe, H.: Power pylon of the future, BYSTRUP design, E-mail: hs@bystrup.dk 16.11.2017 (2017)Google Scholar
  34. 34.
    Soundcoat: Data sheet of damping products. Material data sheet Retrieved from http://www.soundcoat.com/soundcoatdamping.pdf (2017)
  35. 35.
    Trindade, M.A.: Experimental analysis of active-passive vibration control using viscoelastic materials and extension and shear piezoelectric actuators. J. Vib. Control. 17, 917–929 (2011)CrossRefGoogle Scholar
  36. 36.
    Trindade, M.A., Benjeddou, A.: Hybrid Active-Passive damping treatments using viscoelastic and piezoelectric materials: Review and assessment. J. Vib. Control. 8, 699–745 (2002).  https://doi.org/10.1177/1077546029186 Google Scholar
  37. 37.
    Turi, EA: Thermal characterization of polymeric materials, 2nd edn., p 529. Academic Press, Brooklyn (1997)Google Scholar
  38. 38.
    Ungar, E.E., Kerwin, M.: Loss factors of viscoelastic systems in terms of energy concepts. J. Acoust. Soc. Am. 34, 954 (1962)CrossRefGoogle Scholar
  39. 39.
    Wollmann, T., Modler, N., Dannemann, M., Langkamp, A., Nitschke, S., Filippatos, A.: Design and testing of composite compressor blades with focus on the vibration behaviour. Compos. A: Appl. Sci. Manuf. 92, 183–189 (2017)CrossRefGoogle Scholar
  40. 40.
    Yang, F., Yang, J., Zhang, Z., Xing, H.: Dynamic simulation on a broken test of conductors. Procedia engineering. International Conference on Advances in Computational Modeling and Simulation 31, 435–440 (2012)Google Scholar
  41. 41.
    Zhang, S.H., Chen, H.L.: A study on the damping characteristics of laminated composites with integral viscoelastic layers. Compos. Struct. 74, 63–69 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTechnical University of DenmarkLyngbyDenmark
  2. 2.Department of Materials Science and EngineeringGhent UniversityGhentBelgium
  3. 3.Institute of Lightweight Engineering and Polymer TechnologyTechnische Universität DresdenDresdenGermany
  4. 4.Leichtbau-Zentrum Sachsen GmbHDresdenGermany
  5. 5.Department of Mechanical EngineeringPolytechnique MontréalMontréalCanada

Personalised recommendations