Skip to main content

Advertisement

Log in

Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gabr, M.H., Okumura, W., Ueda, H., Kuriyama, W., Uzawa, K., Kimpara, I.: Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay. Compos. Part. B-Eng. 69, 94–100 (2015). https://doi.org/10.1016/j.compositesb.2014.09.033

    Article  CAS  Google Scholar 

  2. Isbilir, O., Ghassemieh, E.: Finite element analysis of drilling of carbon fibre reinforced composites. Appl. Compos. Mater. 19(3–4), 637–656 (2012). https://doi.org/10.1007/s10443-011-9224-9

    Article  Google Scholar 

  3. Dong, C.: Development of a model for predicting the transverse coefficients of thermal expansion of unidirectional carbon fibre reinforced composites. Appl. Compos. Mater. 15(3), 171–182 (2008). https://doi.org/10.1007/s10443-008-9065-3

    Article  CAS  Google Scholar 

  4. Zhou, J., Li, Y., Li, N., Hao, X.: Enhanced interlaminar fracture toughness of carbon fiber/bismaleimide composites via microwave curing. J. Compos. Mater. 51(18), 2585–2595 (2017). https://doi.org/10.1177/0021998316673892

    Article  CAS  Google Scholar 

  5. Wu, X., Li, Y., Li, N., Zhou, J., Hao, X.: Analysis of the effect and mechanism of microwave curing on the chemical shrinkage of epoxy resins. High. Perform. Polym. 29(10), 1165–1174 (2016)

    Article  Google Scholar 

  6. Joshi, S.C., Bhudolia, S.K.: Microwave-thermal technique for energy and time efficient curing of carbon fiber reinforced polymer prepreg composites. J. Compos. Mater. 48(24), 3035–3048 (2014). https://doi.org/10.1177/0021998313504606

    Article  CAS  Google Scholar 

  7. Li, Y., Li, N., Gao, J.: Tooling design and microwave curing technologies for the manufacturing of fiber-reinforced polymer composites in aerospace applications. Int. J. Adv. M. 70(1–4), 591–606 (2014). https://doi.org/10.1007/s00170-013-5268-3

    Article  Google Scholar 

  8. Papargyris, D.A., Day, R.J., Nesbitt, A., Bakavos, D.: Comparison of the mechanical and physical properties of a carbon fibre epoxy composite manufactured by resin transfer moulding using conventional and microwave heating. Compos. Sci. Technol. 68(7), 1854–1861 (2008). https://doi.org/10.1016/j.compscitech.2008.01.010

    Article  CAS  Google Scholar 

  9. Xu, X., Wang, X., Cai, Q., Wang, X., Wei, R., Du, S.: Improvement of the compressive strength of carbon fiber/epoxy composites via microwave curing. J. Mate. Sci. Technol. 32(3), 226–232 (2016)

    Google Scholar 

  10. Zhou, J., Li, Y., Li, N., Hao, X., Liu, C.: Interfacial shear strength of microwave processed carbon fiber/epoxy composites characterized by an improved fiber-bundle pull-out test. Compos. Sci. Technol. 133, 173–183 (2016). https://doi.org/10.1016/j.compscitech.2016.07.033

    Article  CAS  Google Scholar 

  11. Zhou, J., Li, Y., Cheng, L., Hao, X.: Dielectric properties of continuous fiber reinforced polymer composites: modeling, validation, and application. Polym. Compos. (2017). https://doi.org/10.1002/pc.24579

  12. Micheli, D., Apollo, C., Pastore, R., Marchetti, M.: X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos. Sci. Technol. 70(2), 400–409 (2010). https://doi.org/10.1016/j.compscitech.2009.11.015

    Article  CAS  Google Scholar 

  13. Maistros, G.M., Partridge, I.K.: Dielectric monitoring of cure in a commercial carbon-fibre composite. Compos. Sci. Technol. 53(4), 355–359 (1995). https://doi.org/10.1016/0266-3538(95)00007-0

    Article  CAS  Google Scholar 

  14. Carlone, P., Palazzo, G.S.: Unsaturated and saturated flow front tracking in liquid composite molding processes using dielectric sensors. Appl. Compos. Mater. 22(5), 543–557 (2015). https://doi.org/10.1007/s10443-014-9422-3

    Article  CAS  Google Scholar 

  15. Lee, D.G., Kim, H.G.: Non-isothermal in situ dielectric cure monitoring for thermosetting matrix composites. J. Compos. Mater. 38(12), 977–993 (2004). https://doi.org/10.1177/0021998304040563

    Article  CAS  Google Scholar 

  16. Kim, H.S., Yoo, S.H., Chang, S.H.: In Situ Monitoring of the Strain Evolution and Curing Reaction of Composite Laminates to Reduce the Thermal Residual Stress Using FBG Sensor and Dielectrometry. Compos. Part. B-Eng. 44(1), 446–452 (2013)

    Article  CAS  Google Scholar 

  17. Cao, M.S., Song, W.L., Hou, Z.L., Wen, B., Yuan, J.: The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon. 48(3), 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028

    Article  CAS  Google Scholar 

  18. Bobowski, J.S., Johnson, T.: Permittivity measurements of biological samples by an open-ended coaxial line. Prog. Electromagn. Res. 40, 159–183 (2012). https://doi.org/10.2528/PIERB12022906

    Article  Google Scholar 

  19. Fan, Z., Luo, G., Zhang, Z., Zhou, L., Wei, F.: Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater. Sci. Eng. B-Adv. 132(1), 85–89 (2006). https://doi.org/10.1016/j.mseb.2006.02.045

    Article  CAS  Google Scholar 

  20. López-Rodríguez, P., Escot-Bocanegra, D., Poyatos-Martínez, D., Weinmann, F.: Comparison of metal-backed free-space and open-ended coaxial probe techniques for the dielectric characterization of aeronautical composites. Sensors. 16(7), 967 (2016). https://doi.org/10.3390/s16070967

    Article  Google Scholar 

  21. Zhang, X., Chang, T., Cui, H.L., Sun, Z., Yang, C., Yang, X., Fan, W.: A free-space measurement technique of terahertz dielectric properties. J. Infrared. Millim. Te. 38(3), 356–365 (2017). https://doi.org/10.1007/s10762-016-0341-2

    Article  Google Scholar 

  22. Monti, M., Puglia, D., Natali, M., Torre, L., Kenny, J.M.: Effect of carbon nanofibers on the cure kinetics of unsaturated polyester resin: thermal and chemorheological modelling. Compos. Sci. Technol. 71(12), 1507–1516 (2011)

    CAS  Google Scholar 

  23. Mourad, A.H.I., Abdel-Magid, B.M., El-Maaddawy, T., Grami, M.E.: Effect of seawater and warm environment on glass/epoxy and glass/polyurethane composites. Appl. Compos. Mater. 17(5), 557–573 (2010). https://doi.org/10.1007/s10443-010-9143-1

    Article  CAS  Google Scholar 

  24. Li, N., Li, Y., Zhang, L., Hao, X.: Kinetics modeling of carbon-fiber-reinforced bismaleimide composites under microwave and thermal curing. J. Appl. Polym. Sci. 133(33), (2016). https://doi.org/10.1002/app.43770

  25. Friedman, H.L.: Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Ploym. Symp. 6(1), 183–195 (1964)

    Google Scholar 

  26. Kamal, M.R.: Thermoset characterization for moldability analysis. Polym. Eng. Sci. 14(3), 231–239 (1974). https://doi.org/10.1002/pen.760140312

    Article  Google Scholar 

  27. Zvetkov, V.L., Comparative, D.S.C.: Kinetics of the reaction of DGEBA with aromatic diamines.: I. Non-isothermal kinetic study of the reaction of DGEBA with m-phenylene diamine. Polymer. 42(16), 6687–6697 (2001). https://doi.org/10.1016/S0032-3861(01)00160-4

    Article  CAS  Google Scholar 

  28. Li, N., Li, Y., Hao, X., Gao, J.: A comparative experiment for the analysis of microwave and thermal process induced strains of carbon fiber/bismaleimide composite materials. Compos. Sci. Technol. 106, 15–19 (2015). https://doi.org/10.1016/j.compscitech.2014.10.008

    Article  CAS  Google Scholar 

  29. Li, N., Li, Y., Hang, X., Gao, J.: Analysis and optimization of temperature distribution in carbon fiber reinforced composite materials during microwave curing process. J. Mater. Process. Tech. 214(3), 544–550 (2014). https://doi.org/10.1016/j.jmatprotec.2013.10.012

    Article  CAS  Google Scholar 

  30. Debye, P.J.W.: Polar molecules. Chemical Catalog Company, New York (1929)

    Google Scholar 

  31. Kalman, O.F., Smyth, C.P.: Microwave absorption and molecular structure in liquids. XXVIII. The dielectric relaxation of some rigid molecules in viscous solutions. J. Am. Chem. Soc. 82(4), 783–787 (1960). https://doi.org/10.1021/ja01489a005

    Article  CAS  Google Scholar 

  32. Ramo, S., Whinnery, J.R., Van Duzer, T.: Fields and Waves in Communication Electronics. John Wiley & Sons, New York (2008)

    Google Scholar 

  33. Frank, E., Steudle, L.M., Ingildeev, D., Spörl, J.M., Buchmeiser, M.R.: Carbon fibers: precursor systems, processing, structure, and properties. Angew. Chem. Int. Edit. 53(21), 5262–5298 (2014). https://doi.org/10.1002/anie.201306129

    Article  CAS  Google Scholar 

  34. Wang, B., Duan, Y., Zhang, J., Zhao, X.: Microwave radiation effects on carbon fibres interfacial performance. Compos. Part. B-Eng. 99, 398–406 (2016). https://doi.org/10.1016/j.compositesb.2016.06.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Natural Science Foundation of China (Grant no. 51575275), and jointly supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant no. KYCX17_0282); The authors sincerely appreciate the continuous support provided by our industrial collaborators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingguang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, Y. & Zhou, J. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing. Appl Compos Mater 25, 1339–1356 (2018). https://doi.org/10.1007/s10443-017-9669-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9669-6

Keywords

Navigation