Skip to main content
Log in

Thermal and mechanical properties of 3D printed boron nitride – ABS composites

Applied Composite Materials Aims and scope Submit manuscript

Abstract

The current work investigates the thermal conductivity and mechanical properties of Boron Nitride (BN)-Acrylonitrile Butadiene Styrene (ABS) composites prepared using both 3D printing and injection molding. The thermally conductive, yet electrically insulating composite material provides a unique combination of properties that make it desirable for heat dissipation and packaging applications in electronics. Materials were fabricated via melt mixing on a twin-screw compounder, then injection molded or extruded into filament for fused deposition modeling (FDM) 3D printing. Compositions of up to 35 wt.% BN in ABS were prepared, and the infill orientation of the 3D printed composites was varied to investigate the effect on properties. Injection molding produced a maximum in-plane conductivity of 1.45 W/m-K at 35 wt.% BN, whereas 3D printed samples of 35 wt.% BN showed a value of 0.93 W/m-K, over 5 times the conductivity of pure ABS. The resulting thermal conductivity is anisotropic; with the through-plane thermal conductivity lower by a factor of ~3 for injection molding and ~4 for 3D printing. Adding BN flakes caused a modest increase in the flexural modulus, but resulted in a large decrease in the flexural strength and impact toughness. It is shown that although injection molding produces parts with superior thermal and mechanical properties, BN shows much potential as a filler material for rapid prototyping of thermally conductive composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bogue, R.: 3D printing: the dawn of a new era in manufacturing? Assem. Autom. 33(4), 307–311 (2013). https://doi.org/10.1108/aa-06-2013-055

    Article  Google Scholar 

  2. Ivanova, O., Williams, C., Campbell, T.: Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyp. J. 19(5), 353–364 (2013). https://doi.org/10.1108/rpj-12-2011-0127

    Article  Google Scholar 

  3. Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D.: 3D printing of polymer matrix composites: A review and prospective. Compos. Part B. 110, 442–458 (2017). https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  4. Stansbury, J.W., Idacavage, M.J.: 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 32(1), 54–64 (2016). https://doi.org/10.1016/j.dental.2015.09.018

    Article  CAS  Google Scholar 

  5. Bak, D.: Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assem. Autom. 23(4), 340–345 (2003). https://doi.org/10.1108/01445150310501190

    Article  Google Scholar 

  6. Espalin, D., Muse, D.W., MacDonald, E., Wicker, R.B.: 3D Printing multifunctionality: structures with electronics. Int. J. Adv. Manuf. Technol. 72(5–8), 963–978 (2014). https://doi.org/10.1007/s00170-014-5717-7

    Article  Google Scholar 

  7. Lee, G.-W., Park, M., Kim, J., Lee, J.I., Yoon, H.G.: Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos. A: Appl. Sci. Manuf. 37(5), 727–734 (2006). https://doi.org/10.1016/j.compositesa.2005.07.006

    Article  CAS  Google Scholar 

  8. Zhou, W., Wang, C., Ai, T., Wu, K., Zhao, F., Gu, H.: A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Compos. A: Appl. Sci. Manuf. 40(6–7), 830–836 (2009). https://doi.org/10.1016/j.compositesa.2009.04.005

    Article  CAS  Google Scholar 

  9. Zhou, W., Qi, S., An, Q., Zhao, H., Liu, N.: Thermal conductivity of boron nitride reinforced polyethylene composites. Mater. Res. Bull. 42(10), 1863–1873 (2007). https://doi.org/10.1016/j.materresbull.2006.11.047

    Article  CAS  Google Scholar 

  10. Sanada, K., Tada, Y., Shindo, Y.: Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Compos. A: Appl. Sci. Manuf. 40(6–7), 724–730 (2009). https://doi.org/10.1016/j.compositesa.2009.02.024

    Article  CAS  Google Scholar 

  11. Weidenfeller, B., Höfer, M., Schilling, F.R.: Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos. A: Appl. Sci. Manuf. 35(4), 423–429 (2004). https://doi.org/10.1016/j.compositesa.2003.11.005

    Article  CAS  Google Scholar 

  12. Sato, K., Horibe, H., Shirai, T., Hotta, Y., Nakano, H., Nagai, H., Mitsuishi, K., Watari, K.: Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J. Mater. Chem. 20(14), 2749 (2010). https://doi.org/10.1039/b924997d

    Article  CAS  Google Scholar 

  13. Kalsoom, U., Peristyy, A., Nesterenko, P.N., Paull, B.: A 3D printable diamond polymer composite: a novel material for fabrication of low cost thermally conducting devices. RSC Adv. 6(44), 38140–38147 (2016). https://doi.org/10.1039/c6ra05261d

    Article  CAS  Google Scholar 

  14. Campbell, T.A., Ivanova, O.S.: 3D printing of multifunctional nanocomposites. Nano Today. 8(2), 119–120 (2013). https://doi.org/10.1016/j.nantod.2012.12.002

    Article  CAS  Google Scholar 

  15. Jia, Y., He, H., Geng, Y., Huang, B., Peng, X.: High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing. Compos. Sci. Technol. 145, 55–61 (2017). https://doi.org/10.1016/j.compscitech.2017.03.035

    Article  CAS  Google Scholar 

  16. Hwang, S., Reyes, E.I., Moon, K.-S., Rumpf, R.C., Kim, N.S.: Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process. J. Electron. Mater. 44(3), 771–777 (2014). https://doi.org/10.1007/s11664-014-3425-6

    Article  CAS  Google Scholar 

  17. Nikzad, M., Masood, S.H., Sbarski, I.: Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling. Mater. Des. 32(6), 3448–3456 (2011). https://doi.org/10.1016/j.matdes.2011.01.056

    Article  CAS  Google Scholar 

  18. Debelak, B., Lafdi, K.: Use of exfoliated graphite filler to enhance polymer physical properties. Carbon. 45(9), 1727–1734 (2007). https://doi.org/10.1016/j.carbon.2007.05.010

    Article  CAS  Google Scholar 

  19. Tymrak, B.M., Kreiger, M., Pearce, J.M.: Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 58, 242–246 (2014). https://doi.org/10.1016/j.matdes.2014.02.038

    Article  CAS  Google Scholar 

  20. Ahn, S.H., Montero, M., Odell, D., Roundy, S., Wright, P.K.: Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8(4), 248–257 (2002). https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  21. Shaffer, S., Yang, K., Vargas, J., Di Prima, M.A., Voit, W.: On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer. 55(23), 5969–5979 (2014). https://doi.org/10.1016/j.polymer.2014.07.054

    Article  CAS  Google Scholar 

  22. Agarwala, M.K., Jamalabad, V.R., Langrana, N.A., Safari, A., Whalen, P.J., Danforth, S.C.: Structural quality of parts processed by fused deposition. Rapid Prototyp. J. 2(4), 4–19 (1996). https://doi.org/10.1108/13552549610732034

    Article  Google Scholar 

  23. Weng, Z., Wang, J., Senthil, T., Wu, L.: Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater. Des. 102, 276–283 (2016). https://doi.org/10.1016/j.matdes.2016.04.045

    Article  CAS  Google Scholar 

  24. Shemelya, C.M., Rivera, A., Perez, A.T., Rocha, C., Liang, M., Yu, X., Kief, C., Alexander, D., Stegeman, J., Xin, H., Wicker, R.B., MacDonald, E., Roberson, D.A.: Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten–Polycarbonate Polymer Matrix Composite for Space-Based Applications. J. Electron. Mater. 44(8), 2598–2607 (2015). https://doi.org/10.1007/s11664-015-3687-7

    Article  CAS  Google Scholar 

  25. Shofner, M.L., Lozano, K., Rodríguez-Macías, F.J., Barrera, E.V.: Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 89(11), 3081–3090 (2003). https://doi.org/10.1002/app.12496

    Article  CAS  Google Scholar 

  26. Ning, F., Cong, W., Qiu, J., Wei, J., Wang, S.: Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B. 80, 369–378 (2015). https://doi.org/10.1016/j.compositesb.2015.06.013

    Article  CAS  Google Scholar 

  27. Jin, W., Zhang, W., Gao, Y., Liang, G., Gu, A., Yuan, L.: Surface functionalization of hexagonal boron nitride and its effect on the structure and performance of composites. Appl. Surf. Sci. 270, 561–571 (2013). https://doi.org/10.1016/j.apsusc.2013.01.086

    Article  CAS  Google Scholar 

  28. Yung, K.C., Liem, H.: Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. J. Appl. Polym. Sci. 106(6), 3587–3591 (2007). https://doi.org/10.1002/app.27027

    Article  CAS  Google Scholar 

  29. Xu, Y., Chung, D.D.L.: Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interfaces. 7(4), 243–256 (2012). https://doi.org/10.1163/156855400750244969

    Article  Google Scholar 

  30. Ng, H.Y., Lu, X., Lau, S.K.: Thermal conductivity of boron nitride-filled thermoplastics: Effect of filler characteristics and composite processing conditions. Polym. Compos. 26(6), 778–790 (2005). https://doi.org/10.1002/pc.20151

    Article  CAS  Google Scholar 

  31. Bigg, D.M.: Mechanical properties of particulate filled polymers. Polym. Compos. 8(2), 115–122 (1987). https://doi.org/10.1002/pc.750080208

    Article  CAS  Google Scholar 

  32. Huang, M.T., Ishida, H.: Investigation of the boron nitride/polybenzoxazine interphase. J. Polym. Sci. B Polym. Phys. 37(17), 2360–2372 (1999). https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2360::AID-POLB7>3.0.CO;2-V

    Article  CAS  Google Scholar 

  33. Xavier, S.F., Schultz, J.M., Friedrich, K.: Fracture propagation in particulate filled polypropylene composites. J. Mater. Sci. 25(5), 2411–2420 (1990). https://doi.org/10.1007/bf00638035

    Article  CAS  Google Scholar 

  34. Nan, C.-W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81(10), 6692–6699 (1997). https://doi.org/10.1063/1.365209

    Article  CAS  Google Scholar 

  35. Yuan, C., Duan, B., Li, L., Xie, B., Huang, M., Luo, X.: Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets. ACS Appl. Mater. Interfaces. 7(23), 13000–13006 (2015). https://doi.org/10.1021/acsami.5b03007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors kindly thank 3M’s Advanced Materials Division for supplying the Boron Nitride flakes used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Bougher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quill, T.J., Smith, M.K., Zhou, T. et al. Thermal and mechanical properties of 3D printed boron nitride – ABS composites. Appl Compos Mater 25, 1205–1217 (2018). https://doi.org/10.1007/s10443-017-9661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9661-1

Keywords

Navigation