Thermal and mechanical properties of 3D printed boron nitride – ABS composites

  • Tyler J. Quill
  • Matthew K. Smith
  • Tony Zhou
  • Mohamed Gamal Shafik Baioumy
  • Joao Paulo Berenguer
  • Baratunde A. Cola
  • Kyriaki Kalaitzidou
  • Thomas L. Bougher
Article
  • 219 Downloads

Abstract

The current work investigates the thermal conductivity and mechanical properties of Boron Nitride (BN)-Acrylonitrile Butadiene Styrene (ABS) composites prepared using both 3D printing and injection molding. The thermally conductive, yet electrically insulating composite material provides a unique combination of properties that make it desirable for heat dissipation and packaging applications in electronics. Materials were fabricated via melt mixing on a twin-screw compounder, then injection molded or extruded into filament for fused deposition modeling (FDM) 3D printing. Compositions of up to 35 wt.% BN in ABS were prepared, and the infill orientation of the 3D printed composites was varied to investigate the effect on properties. Injection molding produced a maximum in-plane conductivity of 1.45 W/m-K at 35 wt.% BN, whereas 3D printed samples of 35 wt.% BN showed a value of 0.93 W/m-K, over 5 times the conductivity of pure ABS. The resulting thermal conductivity is anisotropic; with the through-plane thermal conductivity lower by a factor of ~3 for injection molding and ~4 for 3D printing. Adding BN flakes caused a modest increase in the flexural modulus, but resulted in a large decrease in the flexural strength and impact toughness. It is shown that although injection molding produces parts with superior thermal and mechanical properties, BN shows much potential as a filler material for rapid prototyping of thermally conductive composites.

Keywords

3D–printing thermal conductivity composite Boron Nitride Fused Deposition Modeling 

Notes

Acknowledgements

The authors kindly thank 3M’s Advanced Materials Division for supplying the Boron Nitride flakes used in this work.

References

  1. 1.
    Bogue, R.: 3D printing: the dawn of a new era in manufacturing? Assem. Autom. 33(4), 307–311 (2013).  https://doi.org/10.1108/aa-06-2013-055 CrossRefGoogle Scholar
  2. 2.
    Ivanova, O., Williams, C., Campbell, T.: Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyp. J. 19(5), 353–364 (2013).  https://doi.org/10.1108/rpj-12-2011-0127 CrossRefGoogle Scholar
  3. 3.
    Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D.: 3D printing of polymer matrix composites: A review and prospective. Compos. Part B. 110, 442–458 (2017).  https://doi.org/10.1016/j.compositesb.2016.11.034 CrossRefGoogle Scholar
  4. 4.
    Stansbury, J.W., Idacavage, M.J.: 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 32(1), 54–64 (2016).  https://doi.org/10.1016/j.dental.2015.09.018 CrossRefGoogle Scholar
  5. 5.
    Bak, D.: Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assem. Autom. 23(4), 340–345 (2003).  https://doi.org/10.1108/01445150310501190 CrossRefGoogle Scholar
  6. 6.
    Espalin, D., Muse, D.W., MacDonald, E., Wicker, R.B.: 3D Printing multifunctionality: structures with electronics. Int. J. Adv. Manuf. Technol. 72(5–8), 963–978 (2014).  https://doi.org/10.1007/s00170-014-5717-7 CrossRefGoogle Scholar
  7. 7.
    Lee, G.-W., Park, M., Kim, J., Lee, J.I., Yoon, H.G.: Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos. A: Appl. Sci. Manuf. 37(5), 727–734 (2006).  https://doi.org/10.1016/j.compositesa.2005.07.006 CrossRefGoogle Scholar
  8. 8.
    Zhou, W., Wang, C., Ai, T., Wu, K., Zhao, F., Gu, H.: A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Compos. A: Appl. Sci. Manuf. 40(6–7), 830–836 (2009).  https://doi.org/10.1016/j.compositesa.2009.04.005 CrossRefGoogle Scholar
  9. 9.
    Zhou, W., Qi, S., An, Q., Zhao, H., Liu, N.: Thermal conductivity of boron nitride reinforced polyethylene composites. Mater. Res. Bull. 42(10), 1863–1873 (2007).  https://doi.org/10.1016/j.materresbull.2006.11.047 CrossRefGoogle Scholar
  10. 10.
    Sanada, K., Tada, Y., Shindo, Y.: Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Compos. A: Appl. Sci. Manuf. 40(6–7), 724–730 (2009).  https://doi.org/10.1016/j.compositesa.2009.02.024 CrossRefGoogle Scholar
  11. 11.
    Weidenfeller, B., Höfer, M., Schilling, F.R.: Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos. A: Appl. Sci. Manuf. 35(4), 423–429 (2004).  https://doi.org/10.1016/j.compositesa.2003.11.005 CrossRefGoogle Scholar
  12. 12.
    Sato, K., Horibe, H., Shirai, T., Hotta, Y., Nakano, H., Nagai, H., Mitsuishi, K., Watari, K.: Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J. Mater. Chem. 20(14), 2749 (2010).  https://doi.org/10.1039/b924997d CrossRefGoogle Scholar
  13. 13.
    Kalsoom, U., Peristyy, A., Nesterenko, P.N., Paull, B.: A 3D printable diamond polymer composite: a novel material for fabrication of low cost thermally conducting devices. RSC Adv. 6(44), 38140–38147 (2016).  https://doi.org/10.1039/c6ra05261d CrossRefGoogle Scholar
  14. 14.
    Campbell, T.A., Ivanova, O.S.: 3D printing of multifunctional nanocomposites. Nano Today. 8(2), 119–120 (2013).  https://doi.org/10.1016/j.nantod.2012.12.002 CrossRefGoogle Scholar
  15. 15.
    Jia, Y., He, H., Geng, Y., Huang, B., Peng, X.: High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing. Compos. Sci. Technol. 145, 55–61 (2017).  https://doi.org/10.1016/j.compscitech.2017.03.035 CrossRefGoogle Scholar
  16. 16.
    Hwang, S., Reyes, E.I., Moon, K.-S., Rumpf, R.C., Kim, N.S.: Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process. J. Electron. Mater. 44(3), 771–777 (2014).  https://doi.org/10.1007/s11664-014-3425-6 CrossRefGoogle Scholar
  17. 17.
    Nikzad, M., Masood, S.H., Sbarski, I.: Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling. Mater. Des. 32(6), 3448–3456 (2011).  https://doi.org/10.1016/j.matdes.2011.01.056 CrossRefGoogle Scholar
  18. 18.
    Debelak, B., Lafdi, K.: Use of exfoliated graphite filler to enhance polymer physical properties. Carbon. 45(9), 1727–1734 (2007).  https://doi.org/10.1016/j.carbon.2007.05.010 CrossRefGoogle Scholar
  19. 19.
    Tymrak, B.M., Kreiger, M., Pearce, J.M.: Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 58, 242–246 (2014).  https://doi.org/10.1016/j.matdes.2014.02.038 CrossRefGoogle Scholar
  20. 20.
    Ahn, S.H., Montero, M., Odell, D., Roundy, S., Wright, P.K.: Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8(4), 248–257 (2002).  https://doi.org/10.1108/13552540210441166 CrossRefGoogle Scholar
  21. 21.
    Shaffer, S., Yang, K., Vargas, J., Di Prima, M.A., Voit, W.: On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer. 55(23), 5969–5979 (2014).  https://doi.org/10.1016/j.polymer.2014.07.054 CrossRefGoogle Scholar
  22. 22.
    Agarwala, M.K., Jamalabad, V.R., Langrana, N.A., Safari, A., Whalen, P.J., Danforth, S.C.: Structural quality of parts processed by fused deposition. Rapid Prototyp. J. 2(4), 4–19 (1996).  https://doi.org/10.1108/13552549610732034 CrossRefGoogle Scholar
  23. 23.
    Weng, Z., Wang, J., Senthil, T., Wu, L.: Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater. Des. 102, 276–283 (2016).  https://doi.org/10.1016/j.matdes.2016.04.045 CrossRefGoogle Scholar
  24. 24.
    Shemelya, C.M., Rivera, A., Perez, A.T., Rocha, C., Liang, M., Yu, X., Kief, C., Alexander, D., Stegeman, J., Xin, H., Wicker, R.B., MacDonald, E., Roberson, D.A.: Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten–Polycarbonate Polymer Matrix Composite for Space-Based Applications. J. Electron. Mater. 44(8), 2598–2607 (2015).  https://doi.org/10.1007/s11664-015-3687-7 CrossRefGoogle Scholar
  25. 25.
    Shofner, M.L., Lozano, K., Rodríguez-Macías, F.J., Barrera, E.V.: Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 89(11), 3081–3090 (2003).  https://doi.org/10.1002/app.12496 CrossRefGoogle Scholar
  26. 26.
    Ning, F., Cong, W., Qiu, J., Wei, J., Wang, S.: Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B. 80, 369–378 (2015).  https://doi.org/10.1016/j.compositesb.2015.06.013 CrossRefGoogle Scholar
  27. 27.
    Jin, W., Zhang, W., Gao, Y., Liang, G., Gu, A., Yuan, L.: Surface functionalization of hexagonal boron nitride and its effect on the structure and performance of composites. Appl. Surf. Sci. 270, 561–571 (2013).  https://doi.org/10.1016/j.apsusc.2013.01.086 CrossRefGoogle Scholar
  28. 28.
    Yung, K.C., Liem, H.: Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. J. Appl. Polym. Sci. 106(6), 3587–3591 (2007).  https://doi.org/10.1002/app.27027 CrossRefGoogle Scholar
  29. 29.
    Xu, Y., Chung, D.D.L.: Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interfaces. 7(4), 243–256 (2012).  https://doi.org/10.1163/156855400750244969 CrossRefGoogle Scholar
  30. 30.
    Ng, H.Y., Lu, X., Lau, S.K.: Thermal conductivity of boron nitride-filled thermoplastics: Effect of filler characteristics and composite processing conditions. Polym. Compos. 26(6), 778–790 (2005).  https://doi.org/10.1002/pc.20151 CrossRefGoogle Scholar
  31. 31.
    Bigg, D.M.: Mechanical properties of particulate filled polymers. Polym. Compos. 8(2), 115–122 (1987).  https://doi.org/10.1002/pc.750080208 CrossRefGoogle Scholar
  32. 32.
    Huang, M.T., Ishida, H.: Investigation of the boron nitride/polybenzoxazine interphase. J. Polym. Sci. B Polym. Phys. 37(17), 2360–2372 (1999).  https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2360::AID-POLB7>3.0.CO;2-V CrossRefGoogle Scholar
  33. 33.
    Xavier, S.F., Schultz, J.M., Friedrich, K.: Fracture propagation in particulate filled polypropylene composites. J. Mater. Sci. 25(5), 2411–2420 (1990).  https://doi.org/10.1007/bf00638035 CrossRefGoogle Scholar
  34. 34.
    Nan, C.-W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81(10), 6692–6699 (1997).  https://doi.org/10.1063/1.365209 CrossRefGoogle Scholar
  35. 35.
    Yuan, C., Duan, B., Li, L., Xie, B., Huang, M., Luo, X.: Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets. ACS Appl. Mater. Interfaces. 7(23), 13000–13006 (2015).  https://doi.org/10.1021/acsami.5b03007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Tyler J. Quill
    • 1
  • Matthew K. Smith
    • 1
  • Tony Zhou
    • 1
  • Mohamed Gamal Shafik Baioumy
    • 2
  • Joao Paulo Berenguer
    • 1
  • Baratunde A. Cola
    • 1
    • 2
  • Kyriaki Kalaitzidou
    • 1
    • 2
  • Thomas L. Bougher
    • 2
  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations