Thermo-Oxidative Induced Damage in Polymer Composites: Microstructure Image-Based Multi-Scale Modeling and Experimental Validation

Article
  • 109 Downloads

Abstract

A multi-scale modeling approach is presented to simulate and validate thermo-oxidation shrinkage and cracking damage of a high temperature polymer composite. The multi-scale approach investigates coupled transient diffusion-reaction and static structural at macro- to micro-scale. The micro-scale shrinkage deformation and cracking damage are simulated and validated using 2D and 3D simulations. Localized shrinkage displacement boundary conditions for the micro-scale simulations are determined from the respective meso- and macro-scale simulations, conducted for a cross-ply laminate. The meso-scale geometrical domain and the micro-scale geometry and mesh are developed using the object oriented finite element (OOF). The macro-scale shrinkage and weight loss are measured using unidirectional coupons and used to build the macro-shrinkage model. The cross-ply coupons are used to validate the macro-shrinkage model by the shrinkage profiles acquired using scanning electron images at the cracked surface. The macro-shrinkage model deformation shows a discrepancy when the micro-scale image-based cracking is computed. The local maximum shrinkage strain is assumed to be 13 times the maximum macro-shrinkage strain of 2.5 × 10−5, upon which the discrepancy is minimized. The microcrack damage of the composite is modeled using a static elastic analysis with extended finite element and cohesive surfaces by considering the modulus spatial evolution. The 3D shrinkage displacements are fed to the model using node-wise boundary/domain conditions of the respective oxidized region. Microcrack simulation results: length, meander, and opening are closely matched to the crack in the area of interest for the scanning electron images.

Keywords

Thermo-oxidative damage Object oriented finite element Extended finite element Traction-separation laws High-temperature polymer matrix composites 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Langer, S., Fuller, E.R., Carter, W.C.: OOF: an image-based finite-element analysis of material microstructures. Comput. Sci. Eng. 3, 15–23 (2001)CrossRefGoogle Scholar
  2. 2.
    Reid, A.C.E., Langer, S.A., Lua, R.C., Coffman, V.R., Haan, S.–.I., Garcia, R.E.: Image-based finite element mesh construction for material microstructures. Comput. Mater. Sci. 43, 989–999 (2008)CrossRefGoogle Scholar
  3. 3.
    Reid, A.C.E., Lua, R.C., Garcia, R.E., Coffman, V.R., Langer, S.A.: Modeling microstructures with OOF2. Int. J. Mater. Prod. Technol. 35, 361–373 (2009)CrossRefGoogle Scholar
  4. 4.
    Coffman, V.R., Reid, A.C.E., Langer, S.A., Dogan, G.: OOF3D: an image-based finite element solver for materials science. Math. Comput. Simul. 82, 2951–2961 (2012)CrossRefGoogle Scholar
  5. 5.
    Goel, A., Chawla, K.K., Vaidya, U.K., Chawla, N., Koopman, M.: Two dimensional microstructure based modelling of Young's modulus of long fibre thermoplastic composite. Mater. Sci. Technol. 24, 864–869 (2008)CrossRefGoogle Scholar
  6. 6.
    Dong, Y., Bhattacharyya, D.: Two dimensional microstructure based modelling of Young's modulus of long fibre thermoplastic composite. Mech. Adv. Mater. Struct. 17, 534–541 (2010)CrossRefGoogle Scholar
  7. 7.
    Dong, Y., Bhattacharyya, D.: Mapping the real micro/nanostructures for the prediction of elastic moduli of polypropylene/clay nanocomposites. Polymer. 51, 816–824 (2010)CrossRefGoogle Scholar
  8. 8.
    Decelle, J., Huet, N., Bellenger, V.: Oxidation induced shrinkage for thermally aged epoxy networks. Polym. Degrad. Stab. 81, 239–248 (2003)CrossRefGoogle Scholar
  9. 9.
    Pochiraju, K.V., Tandon, G.P., Schoeppner, G.A.: Evolution of stress and deformations in high-temperature polymer matrix composites during Thermo-oxidative aging. Mech. Time-Depend. Mater. 12, 45–68 (2008)CrossRefGoogle Scholar
  10. 10.
    Gigliotti, M., Olivier, L., Vu, D.Q., Grandidier, J., Lafarie-Frenot, M.C.: Local shrinkage and stress induced by Thermo-oxidation in composite materials at high temperatures. J. Mech. Phys. Solids. 59, 696–712 (2011)CrossRefGoogle Scholar
  11. 11.
    An, N., Pochiraju, K.: Modeling Damage Growth in Oxidized High-Temperature Polymeric Composites. J. Miner. Met. Mater. Soc. (TMS). 65, 246–255 (2013)CrossRefGoogle Scholar
  12. 12.
    Liang, J., Pochiraju, K.: Oxidation-induced damage evolution in a unidirectional polymer matrix composite. J. Compos. Mater. 49, 1393–1406 (2015)CrossRefGoogle Scholar
  13. 13.
    Daghia, F., Zhang, F., Cluzel, C., Ladevèze, P.: Thermo-Mechano-oxidative behavior at the Ply’s scale: the effect of oxidation on transverse cracking in carbon–epoxy composites. Compos. Struct. 134, 602–612 (2015)CrossRefGoogle Scholar
  14. 14.
    Schoeppner, G.A., Tandon, G.P., Ripberger, E.R.: Anisotropic oxidation and weight loss in PMR-15 composites. Compos. Part A. 38, 890–904 (2007)CrossRefGoogle Scholar
  15. 15.
    Upadhyaya, P., Roy, S., Haque, M.H., Lu, H.: Influence of Nano-clay compounding on Thermo-oxidative stability and mechanical properties of a thermoset polymer system. Compos. Sci. Technol. 84, 8–14 (2013)CrossRefGoogle Scholar
  16. 16.
    Haque, M.H., Upadhyaya, P., Roy, S., Ware, T., Voit, W., Lu, H.: The changes in flexural properties and microstructures of carbon fiber Bismaleimide composite after exposure to a high temperature. Compos. Struct. 108, 57–64 (2014)CrossRefGoogle Scholar
  17. 17.
    Tuttle, M.E.: Structural analysis of polymeric composite materials. Second Edition, 2013. CRC Press, Taylor & Francis Group, Boca Raton, FL (2003)Google Scholar
  18. 18.
    Hussein, R.M., Anandan, S., Chandrashekhara, K.: Flexural behavior of cross-ply thermally aged Bismaleimide composites CAMX conference Proceedings, Anaheim, 26-29 September 2016Google Scholar
  19. 19.
    W-F, W., Cheng, H.-C., Kang, C.-K.: Random field formulation of composite laminates. Compos. Struct. 49, 87–93 (2000)CrossRefGoogle Scholar
  20. 20.
    Barber, A., Kaplanashiri, I., Cohen, S., et al.: Stochastic strength of nanotubes: an appraisal of available data. Compos. Sci. Technol. 65, 2380–2384 (2005)CrossRefGoogle Scholar
  21. 21.
    Asadpoure, A., Mohammadi, S., Vafaia, A.: Modeling crack in orthotropic media using a coupled finite element and partition of Unity methods. Finite Elem. Anal. Des. 42, 1165–1175 (2006)CrossRefGoogle Scholar
  22. 22.
    Huynh, D.B.P., Belytschko, T.: The extended finite element method for fracture in composite materials. Int. J. Numer. Methods Eng. 77, 214–239 (2009)CrossRefGoogle Scholar
  23. 23.
    Ebrahimi, S.H., Mohammadi, S., Asadpoure, A.: An extended finite element (XFEM) approach for crack analysis in composite media. Int. J. Civ. Eng. 6, 198–207 (2008)Google Scholar
  24. 24.
    Hussein, R.M., Anadan, S., Chandrashekhara, K.: Anisotropic oxidation prediction using optimized weight loss models of Bismaleimide composites. J. Mater. Sci. 51, 7236–7253 (2016)CrossRefGoogle Scholar
  25. 25.
    Fayolle, B., Audouin, L., Verdu, J.: Oxidation induced embrittlement in polypropylene –a tensile testing study. Polym. Degrad. Stab. 70, 333–340 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations