Thermo-Oxidative Induced Damage in Polymer Composites: Microstructure Image-Based Multi-Scale Modeling and Experimental Validation

  • Rafid M. Hussein
  • K. Chandrashekhara


A multi-scale modeling approach is presented to simulate and validate thermo-oxidation shrinkage and cracking damage of a high temperature polymer composite. The multi-scale approach investigates coupled transient diffusion-reaction and static structural at macro- to micro-scale. The micro-scale shrinkage deformation and cracking damage are simulated and validated using 2D and 3D simulations. Localized shrinkage displacement boundary conditions for the micro-scale simulations are determined from the respective meso- and macro-scale simulations, conducted for a cross-ply laminate. The meso-scale geometrical domain and the micro-scale geometry and mesh are developed using the object oriented finite element (OOF). The macro-scale shrinkage and weight loss are measured using unidirectional coupons and used to build the macro-shrinkage model. The cross-ply coupons are used to validate the macro-shrinkage model by the shrinkage profiles acquired using scanning electron images at the cracked surface. The macro-shrinkage model deformation shows a discrepancy when the micro-scale image-based cracking is computed. The local maximum shrinkage strain is assumed to be 13 times the maximum macro-shrinkage strain of 2.5 × 10−5, upon which the discrepancy is minimized. The microcrack damage of the composite is modeled using a static elastic analysis with extended finite element and cohesive surfaces by considering the modulus spatial evolution. The 3D shrinkage displacements are fed to the model using node-wise boundary/domain conditions of the respective oxidized region. Microcrack simulation results: length, meander, and opening are closely matched to the crack in the area of interest for the scanning electron images.


Thermo-oxidative damage Object oriented finite element Extended finite element Traction-separation laws High-temperature polymer matrix composites 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Langer, S., Fuller, E.R., Carter, W.C.: OOF: an image-based finite-element analysis of material microstructures. Comput. Sci. Eng. 3, 15–23 (2001)CrossRefGoogle Scholar
  2. 2.
    Reid, A.C.E., Langer, S.A., Lua, R.C., Coffman, V.R., Haan, S.–.I., Garcia, R.E.: Image-based finite element mesh construction for material microstructures. Comput. Mater. Sci. 43, 989–999 (2008)CrossRefGoogle Scholar
  3. 3.
    Reid, A.C.E., Lua, R.C., Garcia, R.E., Coffman, V.R., Langer, S.A.: Modeling microstructures with OOF2. Int. J. Mater. Prod. Technol. 35, 361–373 (2009)CrossRefGoogle Scholar
  4. 4.
    Coffman, V.R., Reid, A.C.E., Langer, S.A., Dogan, G.: OOF3D: an image-based finite element solver for materials science. Math. Comput. Simul. 82, 2951–2961 (2012)CrossRefGoogle Scholar
  5. 5.
    Goel, A., Chawla, K.K., Vaidya, U.K., Chawla, N., Koopman, M.: Two dimensional microstructure based modelling of Young's modulus of long fibre thermoplastic composite. Mater. Sci. Technol. 24, 864–869 (2008)CrossRefGoogle Scholar
  6. 6.
    Dong, Y., Bhattacharyya, D.: Two dimensional microstructure based modelling of Young's modulus of long fibre thermoplastic composite. Mech. Adv. Mater. Struct. 17, 534–541 (2010)CrossRefGoogle Scholar
  7. 7.
    Dong, Y., Bhattacharyya, D.: Mapping the real micro/nanostructures for the prediction of elastic moduli of polypropylene/clay nanocomposites. Polymer. 51, 816–824 (2010)CrossRefGoogle Scholar
  8. 8.
    Decelle, J., Huet, N., Bellenger, V.: Oxidation induced shrinkage for thermally aged epoxy networks. Polym. Degrad. Stab. 81, 239–248 (2003)CrossRefGoogle Scholar
  9. 9.
    Pochiraju, K.V., Tandon, G.P., Schoeppner, G.A.: Evolution of stress and deformations in high-temperature polymer matrix composites during Thermo-oxidative aging. Mech. Time-Depend. Mater. 12, 45–68 (2008)CrossRefGoogle Scholar
  10. 10.
    Gigliotti, M., Olivier, L., Vu, D.Q., Grandidier, J., Lafarie-Frenot, M.C.: Local shrinkage and stress induced by Thermo-oxidation in composite materials at high temperatures. J. Mech. Phys. Solids. 59, 696–712 (2011)CrossRefGoogle Scholar
  11. 11.
    An, N., Pochiraju, K.: Modeling Damage Growth in Oxidized High-Temperature Polymeric Composites. J. Miner. Met. Mater. Soc. (TMS). 65, 246–255 (2013)CrossRefGoogle Scholar
  12. 12.
    Liang, J., Pochiraju, K.: Oxidation-induced damage evolution in a unidirectional polymer matrix composite. J. Compos. Mater. 49, 1393–1406 (2015)CrossRefGoogle Scholar
  13. 13.
    Daghia, F., Zhang, F., Cluzel, C., Ladevèze, P.: Thermo-Mechano-oxidative behavior at the Ply’s scale: the effect of oxidation on transverse cracking in carbon–epoxy composites. Compos. Struct. 134, 602–612 (2015)CrossRefGoogle Scholar
  14. 14.
    Schoeppner, G.A., Tandon, G.P., Ripberger, E.R.: Anisotropic oxidation and weight loss in PMR-15 composites. Compos. Part A. 38, 890–904 (2007)CrossRefGoogle Scholar
  15. 15.
    Upadhyaya, P., Roy, S., Haque, M.H., Lu, H.: Influence of Nano-clay compounding on Thermo-oxidative stability and mechanical properties of a thermoset polymer system. Compos. Sci. Technol. 84, 8–14 (2013)CrossRefGoogle Scholar
  16. 16.
    Haque, M.H., Upadhyaya, P., Roy, S., Ware, T., Voit, W., Lu, H.: The changes in flexural properties and microstructures of carbon fiber Bismaleimide composite after exposure to a high temperature. Compos. Struct. 108, 57–64 (2014)CrossRefGoogle Scholar
  17. 17.
    Tuttle, M.E.: Structural analysis of polymeric composite materials. Second Edition, 2013. CRC Press, Taylor & Francis Group, Boca Raton, FL (2003)Google Scholar
  18. 18.
    Hussein, R.M., Anandan, S., Chandrashekhara, K.: Flexural behavior of cross-ply thermally aged Bismaleimide composites CAMX conference Proceedings, Anaheim, 26-29 September 2016Google Scholar
  19. 19.
    W-F, W., Cheng, H.-C., Kang, C.-K.: Random field formulation of composite laminates. Compos. Struct. 49, 87–93 (2000)CrossRefGoogle Scholar
  20. 20.
    Barber, A., Kaplanashiri, I., Cohen, S., et al.: Stochastic strength of nanotubes: an appraisal of available data. Compos. Sci. Technol. 65, 2380–2384 (2005)CrossRefGoogle Scholar
  21. 21.
    Asadpoure, A., Mohammadi, S., Vafaia, A.: Modeling crack in orthotropic media using a coupled finite element and partition of Unity methods. Finite Elem. Anal. Des. 42, 1165–1175 (2006)CrossRefGoogle Scholar
  22. 22.
    Huynh, D.B.P., Belytschko, T.: The extended finite element method for fracture in composite materials. Int. J. Numer. Methods Eng. 77, 214–239 (2009)CrossRefGoogle Scholar
  23. 23.
    Ebrahimi, S.H., Mohammadi, S., Asadpoure, A.: An extended finite element (XFEM) approach for crack analysis in composite media. Int. J. Civ. Eng. 6, 198–207 (2008)Google Scholar
  24. 24.
    Hussein, R.M., Anadan, S., Chandrashekhara, K.: Anisotropic oxidation prediction using optimized weight loss models of Bismaleimide composites. J. Mater. Sci. 51, 7236–7253 (2016)CrossRefGoogle Scholar
  25. 25.
    Fayolle, B., Audouin, L., Verdu, J.: Oxidation induced embrittlement in polypropylene –a tensile testing study. Polym. Degrad. Stab. 70, 333–340 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations