Skip to main content

Advertisement

Log in

A New Adaptive Response Surface Model for Reliability Analysis of 2.5D C/SiC Composite Turbine Blade

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In order to calculate the failure probability of complex structures such as a 2.5D/SiC composites turbine blade and improve the structure safety, a new adaptive model of Response Surface (RS) analysis has been developed in this paper, which can improve the computational efficiency of structural failure problem while ensure the accuracy. The Gaussian Process Regression (GPR) theory was used to establish the RS and reconstruct the performance function of structure. And, an Adaptive Latin hypercube Sampling (ALHS) strategy was adopted in the process of establishing and correcting the RS. Finally the Direct Simulation Monte Carlo(DSMC)was utilized to calculate the failure probability of the performance function replacing the complex structure. Two numerical examples were calculated to validate the accuracy and computational efficiency of the proposed method. Additionally the finite element stress analysis results of 2.5D C/SiC composite turbine blade were used to structural reliability analysis by the proposed method. The approach in this paper provides a new way to evaluate the risk of the complex structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Madsen, O.D.H.O.: Structural Reliability Methods[M]. John Wiley & Sons, Incorporated, New York (2005)

    Google Scholar 

  2. Guoshao Su, Bo Yu,Yilong Xiao,Liubin Yan. Gaussian Process Machine-Learning Method for Structural Reliability Analysis[J]. Advances in Structural Engineering. 17(9), 1257–1270 (2014)

    Article  Google Scholar 

  3. Gao, X., Yu, G., Xue, J., et al.: Failure analysis of C/SiC composites plate with a hole by the PFA and DIC method[J]. Ceram. Int. 43(6), 5255–5266 (2017)

    Article  CAS  Google Scholar 

  4. Xue, J., Gao, X., Fang, G., et al. Continuous Damage Constitutive Model of 2.5D C/SiC Composite[J]. Acta Materiae Compositae Sinica. 33(03), 606–612 (2016)

  5. Sun, Z., Kong, C., Niu, X., et al.: Optimization and Reliability Analysis of 2.5D C/SiC Composites Turbine Stator Vane[J]. Appl. Compos. Mater. 21(5), 789–803 (2014)

    Article  CAS  Google Scholar 

  6. Schmidt, S., Beyer, S., Knabe, H., et al.: Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronaut. 55(3–9), 409–420 (2004)

    Article  Google Scholar 

  7. Chen, X., Sun, Z., Sun, J., et al: Simulation of Degraded Properties of 2D plain Woven C/SiC Composites under Preloading Oxidation Atmosphere[J]. Applied Composite Materials, (2017)

  8. Chen, M., Xie, W., Qiu, H.: Recent Progress in Continuous SiC Fiber Reinforced SiC Ceramic Matrix Composites[J]. Adv Ceram. 06, 393–402 (2016)

    Google Scholar 

  9. Riedel, R., Chen, I: Ceramics Science and Technology Volume 4: Applications[M]//:172–178 (2013)

  10. Zhang, L., Peng, Z., Guo, S., et al.: Advancement in CMC Research on the Aero-Engine Turbine Components[J]. Aviat Maintenance Eng. 12, 41–43 (2016)

    Google Scholar 

  11. Zhu, S., Huang, H., Peng, W., et al.: Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty[J]. Reliab Eng Syst Saf. 146, 1–12 (2016)

    Article  Google Scholar 

  12. Sun, Z., Wang, C., Niu, X., et al.: A response surface approach for reliability analysis of 2.5D C/SiC composites turbine blade[J]. Compos. Part B. 85, 277–285 (2016)

    Article  CAS  Google Scholar 

  13. Alves F J L, Baptista A M, Marques A T. Metal and ceramic matrix composites in aerospace engineering[J]. Advanced Composite Materials for Aerospace Engineering:59–99 (2016)

  14. Chunyuan Kong, Z.S.X.G.: Tensile property of 2.5D C/SiC composites in warp direction[J]. Acta Materiae Compositae Sinica. 29(2), 192–198 (2012)

    Google Scholar 

  15. Chiachio, M., Chiachio, J., Rus, G.: Reliability in composites – A selective review and survey of current development[J]. Compos. Part B. 43(3), 902–913 (2012)

    Article  Google Scholar 

  16. Ghasemi, H., Kerfriden, P., Bordas, S.P.A., et al.: Probabilistic multiconstraints optimization of cooling channels in ceramic matrix composites[J]. Compos. Part B. 81, 107–119 (2015)

    Article  CAS  Google Scholar 

  17. Lü, Q., Low, B.K.: Probabilistic analysis of underground rock excavations using response surface method and SORM[J]. Comput. Geotech. 38(8), 1008–1021 (2011)

    Article  Google Scholar 

  18. Fernández, F.G., de Palacios, P., Esteban, L.G., et al.: Prediction of MOR and MOE of structural plywood board using an artificial neural network and comparison with a multivariate regression model[J]. Compos. Part B. 43(8), 3528–3533 (2012)

    Article  Google Scholar 

  19. Carlone, P., Aleksendrić, D., Ćirović, V., et al.: Meta-modeling of the curing process of thermoset matrix composites by means of a FEM–ANN approach[J]. Compos. Part B. 67, 441–448 (2014)

    Article  CAS  Google Scholar 

  20. Kwon, D., Azarian, M.H., Pecht, M.: Remaining-Life Prediction of Solder Joints Using RF Impedance Analysis and Gaussian Process Regression[J]. IEEE Trans. Compon. Packag. Manuf. Technol. 5(11), 1602–1609 (2015)

    Article  Google Scholar 

  21. Costas, M., Díaz, J., Romera, L., et al.: A multi-objective surrogate-based optimization of the crashworthiness of a hybrid impact absorber[J]. Int. J. Mech. Sci. 88, 46–54 (2014)

    Article  Google Scholar 

  22. Kang, F., Han, S., Salgado, R., et al.: System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling[J]. Comput. Geotech. 63, 13–25 (2015)

    Article  Google Scholar 

  23. Goins, A.K., Carpenter, R., Wong, W., et al.: Implementation of a Gaussian process-based machine learning grasp predictor[J]. Auton. Robot. 40(4), 687–699 (2016)

    Article  Google Scholar 

  24. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning[M]. The MIT Press, London (2006)

    Google Scholar 

  25. Peng, L., Su, G., Wang, Z., et al.: Reliability Analysis Method for Geotechnical Engineering Structure Using Gaussian Process Classification Based Monte Carlo Simulation[J]. Sci Technol Eng. 21, 6150–6157 (2013)

    Google Scholar 

  26. Hao, J., Su, G., Wang, Z., et al.: Fast estimation of failure probability for engineering structure using Gaussian Process Regression[J]. Spat Struct. 03, 82–87 (2014)

    Google Scholar 

  27. Mlakar, M., Petelin, D., Tušar, T., et al.: GP-DEMO: Differential Evolution for Multiobjective Optimization based on Gaussian Process models[J]. Eur. J. Oper. Res. 243(2), 347–361 (2015)

    Article  Google Scholar 

  28. Roussouly, N., Petitjean, F., Salaun, M.: A new adaptive response surface method for reliability analysis[J]. Probab Eng Mech. 32, 103–115 (2013)

    Article  Google Scholar 

  29. Blatman, G., Sudret, B.: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[J]. Probab Eng Mech. 25(2), 183–197 (2010)

    Article  Google Scholar 

  30. Olsson, A: Latin Hypercube Sampling for Stochastic Finite Element Analysis[J]. Journal of Engineering Mechanics, (2002)

  31. Wang, G.G.: Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points[J]. J. Mech. Des. 125(2), 210–220 (2003)

    Article  Google Scholar 

  32. Molinaro, A.M.S.R.P.R: Prediction error estimation: a comparison of resampling methods[J]. BIOINFORMATICS. 21(15), 3301–3307 (2005)

    Article  CAS  Google Scholar 

  33. Zhao, W.: Research on Gaussian process based dynamic response surface method of reliability analysis for complex structure[D]. Guangxi University, (2014)

  34. Wang, C.: Development of Onboard Life Expenditure Monitoring System for Aero-Engine and Research on Robust Optimization Method [D]. Nanjing University of Aeronautics and Astronautics, (2016)

  35. Siber, MK 202 engine stress standard: EGD-3:EGD-3[S]. BeiJing:International Aviation Editorial Department (1979)

Download references

Acknowledgements

Supports of this project provided by National Basic Research Program of China, National Natural Science Foundation of China (51675266), the Fundamental Research Funds for the Central Universities (NJ20160038, NS2017011),Foundation of Graduate Innovation Center in NUAA (No.kfjj20160213), Foundation of Graduate Innovation Center in NUAA (No.kfjj20170208) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Sun, Z., Sun, W. et al. A New Adaptive Response Surface Model for Reliability Analysis of 2.5D C/SiC Composite Turbine Blade. Appl Compos Mater 25, 1075–1091 (2018). https://doi.org/10.1007/s10443-017-9652-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9652-2

Keywords

Navigation