Advertisement

Design and modeling of a combined embedded enhanced honeycomb with tunable mechanical properties

Article
  • 257 Downloads

Abstract

Honeycomb structures are increasingly being used in many important fields. A novel combined embedded enhanced honeycomb (CEEH) in developed in this paper based on the two existing embedded enhanced honeycombs, the single rib embedded enhanced honeycomb (SREEH) and the rhombic grid embedded enhanced honeycomb (RGEEH). Analytical model related to the in-plane Young’s modulus and Poisson’s ratio is built and validated by using two different finite element (FE) models (3D beam model and 3D solid model). The in-plane elastic behavior of the honeycomb is also investigated against the geometrical parameters by using the numerically validated analytical solutions. The results show that the new CEEH can achieve a wide range value of Poisson’s ratio and Young’s modulus by tailoring geometric parameters. The results also show that the new CEEH exhibits higher x- directional specific stiffness than SREEH while higher y- directional specific stiffness than RGEEH. Moreover, the new CEEH can weaken even eliminate the difference between the two principal directions which can be hardly achieved by the SREEH and RGEEH. Given these advantages, this new design may be promising in some applications. This work provides a new insight into the designs of embedded enhanced honeycombs.

Keywords

Basic re-entrant hexagonal honeycomb (BRHH) Embedded enhanced honeycombs Tunable mechanical properties Negative Poisson’s ratio (NPR) Zero Poisson’s ratio (ZPR) 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant number 11672338).

References

  1. 1.
    Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1999)Google Scholar
  2. 2.
    Zhang, Q., Yang, X., Li, P., Huang, G., Feng, S., Shen, C., Han, B., Zhang, X., Jin, F., Xu, F., Lu, T.J.: Bioinspired engineering of honeycomb structure – Using nature to inspire human innovation. Prog. Mater. Sci. 74, 332–400 (2015)CrossRefGoogle Scholar
  3. 3.
    Ingrole, A., Hao, A., Liang, R.: Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater. Des. 117, 72–83 (2017)CrossRefGoogle Scholar
  4. 4.
    Carneiro, V.H., Meireles, J., Puga, H.: Auxetic materials — A review. Mater. Sci. Pol. 31(4), 561–571 (2013)CrossRefGoogle Scholar
  5. 5.
    Grima, J.N., Attard, D., Gatt, R., Cassar, R.N.: A novel process for the manufacture of auxetic foams and for their re-convention to conventional form. Adv. Eng. Mater. 11(7), 533–535 (2010)CrossRefGoogle Scholar
  6. 6.
    Lakes, R.: Foam Structures with a Negative Poisson's Ratio. Sci. 235(4792), 1038–1040 (1987)CrossRefGoogle Scholar
  7. 7.
    Evans, K.E., Nkansah, M.A., Hutchinson, I.J., ROGERS, S.C.: Molecular network design. Nat. 353(6340), 124–124 (1991)CrossRefGoogle Scholar
  8. 8.
    Kolken, H.M.A., Zadpoor, A.A.: Auxetic mechanical metamaterials. RSC Adv. 7(9), 5111–5129 (2017)CrossRefGoogle Scholar
  9. 9.
    Mousanezhad, D., Babaee, S., Ebrahimi, H., Ghosh, R., Hamouda, A.S., Bertoldi, K., Vaziri, A.: Hierarchical honeycomb auxetic metamaterials. Sci Rep. 5, 18306 (2015)CrossRefGoogle Scholar
  10. 10.
    Bertoldi, K., Reis, P.M., Willshaw, S., Mullin, T.: Negative Poisson's ratio behavior induced by an elastic instability. Adv. Mater. 22(3), 361–366 (2010)CrossRefGoogle Scholar
  11. 11.
    Ghaedizadeh, A., Shen, J., Ren, X., Xie, Y.: Tuning the Performance of Metallic Auxetic Metamaterials by Using Buckling and Plasticity. Mater. 9(1), 1–27 (2016)CrossRefGoogle Scholar
  12. 12.
    Argatov, I.I., Guinovart-Díaz, R., Sabina, F.J.: On local indentation and impact compliance of isotropic auxetic materials from the continuum mechanics viewpoint. Int. J. Eng. Sci. 54(5), 42–57 (2012)CrossRefGoogle Scholar
  13. 13.
    Coenen, V.L., Alderson, K.L.: Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates. Phys. Status Solidi B. 248(1), 66–72 (2011)CrossRefGoogle Scholar
  14. 14.
    Evans, K.E., Alderson, A.: Auextic materials: functional materials and structures from lateral thinking! Adv. Mater. 12(9), 617–628 (2000)CrossRefGoogle Scholar
  15. 15.
    Mohsenizadeh, S., Alipour, R., Rad, M.S., Nejad, A.F., Ahmad, Z.: Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading. Mater. Des. 88, 258–268 (2015)CrossRefGoogle Scholar
  16. 16.
    Hou, S., Liu, T., Zhang, Z., Han, X., Li, Q.: How does negative Poisson’s ratio of foam filler affect crashworthiness? Mater. Des. 82, 247–259 (2015)CrossRefGoogle Scholar
  17. 17.
    Choi, J.B., Lakes, R.S.: Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: experiment and analysis. Int. J. Fract. 80(1), 73–83 (1996)CrossRefGoogle Scholar
  18. 18.
    Prawoto, Y.: Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 58, 140–153 (2012)CrossRefGoogle Scholar
  19. 19.
    Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Compos. Struct. 35(4), 403–422 (1996)CrossRefGoogle Scholar
  20. 20.
    Grima, J.N., Attard, D., Ellul, B., Gatt, R.: An improved analytical model for the elastic constants of auxetic and conventional hexagonal honeycombs. Cell. Polym. 30(6), 287–310 (2011)Google Scholar
  21. 21.
    Scarpa, F., Panayiotou, P., Tomlinson, G.: Numerical and experimental uniaxial loading on in-plane auxetic honeycombs. J. Strain Anal. Eng. Des. 35(35), 383–388 (2000)CrossRefGoogle Scholar
  22. 22.
    Hu, L.L., Deng, H.: Indentation resistance of the re-entrant hexagonal honeycombs with negative poisson’s ratio. Mater. Res. Innov. 19(S1), S1-442–S1-445 (2015)CrossRefGoogle Scholar
  23. 23.
    Wan, H., Ohtaki, H., Kotosaka, S., Hu, G.M.: A study of negative Poisson's ratios in auxetic honeycombs based on a large deflection model. Eur. J. Mech. A. Solids. 23(1), 95–106 (2004)CrossRefGoogle Scholar
  24. 24.
    Fu, M.H., Xu, O.T., Hu, L.L., Yu, T.X.: Nonlinear shear modulus of re-entrant hexagonal honeycombs under large deformation. Int. J. Solids Struct. 80, 284–296 (2015)CrossRefGoogle Scholar
  25. 25.
    Liu, W., Wang, N., Luo, T., Lin, Z.: In-plane dynamic crushing of re-entrant auxetic cellular structure. Mater. Des. 100, 84–91 (2016)CrossRefGoogle Scholar
  26. 26.
    Boldrin, L., Hummel, S., Scarpa, F., Di Maio, D., Lira, C., Ruzzene, M., Remillat, C.D.L., Lim, T.C., Rajasekaran, R., Patsias, S.: Dynamic behaviour of auxetic gradient composite hexagonal honeycombs. Compos. Struct. 149, 114–124 (2016)CrossRefGoogle Scholar
  27. 27.
    Zied, K., Osman, M., Elmahdy, T.: Enhancement of the in-plane stiffness of the hexagonal re-entrant auxetic honeycomb cores. Phys. Status Solidi B. 252(12), 2685–2692 (2015)CrossRefGoogle Scholar
  28. 28.
    Li, D., Ma, J., Dong, L., Lakes, R.S.: Stiff square structure with a negative Poisson’s ratio. Mater. Lett. 188, 149–151 (2017)CrossRefGoogle Scholar
  29. 29.
    Lu, Z.X., Li, X., Yang, Z.Y., Xie, F.: Novel structure with negative Poisson’s ratio and enhanced Young’s modulus. Compos. Struct. 138, 243–252 (2016)CrossRefGoogle Scholar
  30. 30.
    Fu, M.H., Chen, Y., Hu, L.L.: Bilinear elastic characteristic of enhanced auxetic honeycombs. Compos. Struct. 175, 101–110 (2017)CrossRefGoogle Scholar
  31. 31.
    Grima, J.N., Oliveri, L., Attard, D., Ellul, B., Gatt, R., Cicala, G., Recca, G.: Hexagonal Honeycombs with Zero Poisson's Ratios and Enhanced Stiffness. Adv. Eng. Mater. 12(9), 855–862 (2010)CrossRefGoogle Scholar
  32. 32.
    Lira, C., Scarpa, F.: Transverse shear stiffness of thickness gradient honeycombs. Compos. Sci. Technol. 70(6), 930–936 (2010)CrossRefGoogle Scholar
  33. 33.
    Assidi, M., Ganghoffer, J.F.: Composites with auxetic inclusions showing both an auxetic behavior and enhancement of their mechanical properties. Compos. Struct. 94(8), 2373–2382 (2012)CrossRefGoogle Scholar
  34. 34.
    Poźniak, A.A., Wojciechowski, K.W., Grima, J.N., Mizzi, L.: Planar auxeticity from elliptic inclusions. Compos. Part B. 94, 379–388 (2016)CrossRefGoogle Scholar
  35. 35.
    Bückmann, T., Stenger, N., Kadic, M., Kaschke, J., Frölich, A., Kennerknecht, T., Eberl, C., Thiel, M., Wegener, M.: Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24(20), 2710–2714 (2012)CrossRefGoogle Scholar
  36. 36.
    Yang, L., Harrysson, O., West, H., Cormier, D.: Modeling of uniaxial compression in a 3D periodic re-entrant lattice structure. J. Mater. Sci. 48(4), 1413–1422 (2013)CrossRefGoogle Scholar
  37. 37.
    Yang, L., Harrysson, O., West, H., Cormier, D.: Mechanical properties of 3D reentrant honeycomb auxetic structures realized via additive manufacturing. Int. J. Solids Struct. 69–70, 475–490 (2015)CrossRefGoogle Scholar
  38. 38.
    Wang, K., Chang, Y.H., Chen, Y.W., Zhang, C., Wang, B.: Designable dual-material auxetic metamaterials using three-dimensional printing. Mater. Des. 67, 159–164 (2015)CrossRefGoogle Scholar
  39. 39.
    Wang, X.T., Li, X.W., Ma, L.: Interlocking assembled 3D auxetic cellular structures. Mater. Des. 99, 467–476 (2016)CrossRefGoogle Scholar
  40. 40.
    Wang, X.T., Wang, B., Li, X.W., Ma, L.: Mechanical properties of 3D re-entrant auxetic cellular structures. Int. J. Mech. Sci. 131–132, 396–407 (2017)CrossRefGoogle Scholar
  41. 41.
    Fu, M.H., Chen, Y., Hu, L.L.: A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Compos. Struct. 160, 574–585 (2016)CrossRefGoogle Scholar
  42. 42.
    Ştefan, S., Sandu, M., Sandu, A., Dan, M.C.: Finite Element Models Used to Determine the Equivalent In-plane Properties of Honeycombs. Mater. Today Proc. 3(4), 1161–1166 (2016)CrossRefGoogle Scholar
  43. 43.
    Sun, C.T., Vaidya, R.S.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56(2), 171–179 (1996)CrossRefGoogle Scholar
  44. 44.
    Grenestedt, J.L.: Effective elastic behavior of some models for perfect cellular solids. Int. J. Solids Struct. 36(10), 1471–1501 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Applied Mechanics and Engineering, School of EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations