Applied Composite Materials

, Volume 25, Issue 2, pp 425–447 | Cite as

A Numerical/Experimental Study on the Impact and CAI Behaviour of Glass Reinforced Compsite Plates

  • Giovanni Perillo
  • Jens K. Jørgensen
  • Roberta Cristiano
  • Aniello Riccio


This paper focuses on the development of an advance numerical model specifically for simulating low velocity impact events and related stiffness reduction on composite structures. The model is suitable for low cost thick composite structures like wind turbine blade and maritime vessels. The model consist of a combination of inter and intra laminar models. The intra-laminar model present a combination of Puck and Hashin failure theories for the evaluation of the fibre and matrix failure. The inter-laminar damage is instead simulated by Cohesive Zone Method based on energy approach. Basic material properties, easily measurable according to standardized tests, are required. The model has been used to simulate impact and compression after impact tests. Experimental tests have been carried out on thick E-Glass/Epoxy composite commonly used in the wind turbine industry. The clustering effect as well as the consequence of the impact energy have been experimentally tested. The accuracy of numerical model has been verified against experimental data showing a very good accuracy of the model.


Composite GFRP Low velocity impact CAI Experimental FEM 


  1. 1.
    Abrate, S: Impact on composite structures. Cambridge University Press (1998)Google Scholar
  2. 2.
    Sutherland, L.S., Guedes, S.C.: Impact behaviour of typical marine composite laminates. Compos. Part B. 37(2–3), 89–100 (2005)CrossRefGoogle Scholar
  3. 3.
    Benzeggagh, M.L., Kenane, M.: Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus. Compos. Sci. Technol. 56(4), 439–449 (1996)Google Scholar
  4. 4.
    Sepe, R., De Luca, A., Lamanna, G., Caputo, F.: Numerical and experimental investigation of residual strength of a LVI damaged CFRP omega stiffened panel with a cut-out. Compos. Part B. 102, 38–56 (2016)CrossRefGoogle Scholar
  5. 5.
    Turon, A., Camanho, P.P., Costa, J., Dávila, C.G.: A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38(11), 1072–1089 (2006)CrossRefGoogle Scholar
  6. 6.
    Sutherland, L.S., Guedes, S.C.: The effects of test parameters on the impact response of glass reinforced plastic using an experimental design approach. Compos. Sci. Technol. 63(1), 1–18 (2003)CrossRefGoogle Scholar
  7. 7.
    Sutherland, L.S., Guedes, S.C.: Impact characterisation of low fibre-volume glass reinforced polyester circular laminated plates. Int. J. Impact Eng. 31(1), 1–23 (2005)CrossRefGoogle Scholar
  8. 8.
    Sutherland, L.S., Guedes, S.C.: Impact on low fibre-volume, glass/polyester rectangular plates. Compos. Struct. 68(1), 13–22 (2005)CrossRefGoogle Scholar
  9. 9.
    Olsson, R.: Analytical prediction of large mass impact damage in composite laminates. Compos. A: Appl Sci. Manuf. 32(9), 1187–1376 (2001)Google Scholar
  10. 10.
    Naik, N.K.C.Y.: Damage in woven-fabric composites subjected to low-velocity impact. Compos. Sci. Technol. 60(5), 731–744 (2000)Google Scholar
  11. 11.
    Zhou, G.: The use of experimentally-determined impact force as a damage measure in impact damage resistance and tolerance of composite structures. Compos. Struct. 42(4), 375–382 (1998)Google Scholar
  12. 12.
    Abrate, S.: Modeling of impacts on composite structures. Compos. Struct. 51(2), 129–138 (2001)Google Scholar
  13. 13.
    Olsson, D.M., Falzon, B.G.: Delamination threshold load for dynamic impact on plates. Int. J. Solids Struct. 43(10), 3124–3141 (2006)CrossRefGoogle Scholar
  14. 14.
    Gong, S.W.T.S., Shim, V.P.W.: The elastic response of orthotropic laminated cylindrical shells to low-velocity impact. Compos. Eng. 4(2), 247–266 (1994)CrossRefGoogle Scholar
  15. 15.
    Gong, S.W.T.S., Shim, V.P.W.: Impact response of laminated shells with orthogonal curvatures. Compos. Eng. 5(3), 257–275 (1995)CrossRefGoogle Scholar
  16. 16.
    González, E.V., Maimí, P., Camanho, P.P., Turon, A., Mayugo, J.A.: Simulation of drop-weight impact and compression after impact tests on composite laminates. Compos. Struct. 94(11), 3364–3378 (2012)CrossRefGoogle Scholar
  17. 17.
    Bouvet, C., Castanié, B., Bizeul, M., Barrau, J.-J.: Low velocity impact modelling in laminate composite panels with discrete interface elements. Int. J. Solids Struct. 46(14–15), 2809–2821 (2009)CrossRefGoogle Scholar
  18. 18.
    Hu, N., Zemba, Y., Okabe, T., Yan, C., Fukunaga, H., Elmarakbi, A.M.: A new cohesive model for simulating delamination propagation in composite laminates under transverse loads. Mech. Mater. 40(11), 920–935 (2008)CrossRefGoogle Scholar
  19. 19.
    de Moura, M.F.S.F., Gonçalves, J.P.M.: Modelling the interaction between matrix cracking and delamination in carbon–epoxy laminates under low velocity impact. Compos. Sci. Technol. 64(7–8), 1021–1027 (2004)CrossRefGoogle Scholar
  20. 20.
    Li, S., Reid, S.R., Zou, Z.: Modelling damage of multiple delaminations and transverse matrix cracking in laminated composites due to low velocity lateral impact. Compos. Sci. Technol. 66(6), 827–836 (2006)CrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Zhu, P., Lai, X.: Finite element analysis of low-velocity impact damage in composite laminated plates. Mater. Des. 27(6), 513–519 (2006)CrossRefGoogle Scholar
  22. 22.
    Caputo, F., De Luca, A., Lamanna, G., Borrelli, R., Mercurio, U.: Numerical Study for the Structural Analysis of Composite Laminates Subjected to Low Velocity Impact. Compos. Part B. 67, 296–302 (2014)CrossRefGoogle Scholar
  23. 23.
    Caputo F., Lamanna G., De Luca A., Lopresto V.: Numerical Simulation of LVI Test onto Composite Plates, Times of Polymers (TOP) and Composites 2014: Proceedings of the 7TH International Conference on Times of Polymers (TOP) and Composites; 334–337 (1599)Google Scholar
  24. 24.
    Li, C.F., Hu, N., Cheng, J.G., Fukunaga, H., Sekine, H.: Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part II. Verification and numerical investigation. Compos. Part A. 33(8), 1063–1072 (2002)CrossRefGoogle Scholar
  25. 25.
    Li, C.F., Hu, N., Yin, Y.J., Sekine, H., Fukunaga, H.: Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part I. An FEM numerical model. Compos. Part A. 33(8), 1055–1062 (2002)CrossRefGoogle Scholar
  26. 26.
    Hyung, Y.C., Chang, F.-K.: A Model for Predicting Damage in Graphite/Epoxy Laminated Composites Resulting from Low-Velocity Point Impact. J. Compos. Mater. 26(14), 2134–2169 (1992)CrossRefGoogle Scholar
  27. 27.
    Lee, J.C.S.: Prediction of Impact-Induced Fibre Damage in Circular Composite Plate. Appl. Compos. Mater. 12, 109–131 (2005)CrossRefGoogle Scholar
  28. 28.
    Camanho, P.P., Davila, C.G., de Moura, M.F.: Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials. J. Compos. Mater. 37(16), 1415–1438 (2003)CrossRefGoogle Scholar
  29. 29.
    Nishikawa, M., Okabe, T., Takeda, N.: Numerical simulation of interlaminar damage propagation in CFRP cross-ply laminates under transverse loading. Int. J. Solids Struct. 44(10), 3101–3113 (2007)CrossRefGoogle Scholar
  30. 30.
    Borg, R., Nilsson, L., Simonsson, K.: Simulation of low velocity impact on fibre laminates using a cohesive zone based delamination model. Compos. Sci. Technol. 64(2), 279–288 (2004)CrossRefGoogle Scholar
  31. 31.
    Aoki, Y., Suemasu, H., Ishikawa, T.: Damage propagation in CFRP laminates subjected to low velocity impact and static indentation. Adv. Compos. Mater. 16(1), 45–61 (2007)CrossRefGoogle Scholar
  32. 32.
    Geubelle, P.H., Baylor, J.S.: Impact-induced delamination of composites: a 2D simulation. Compos. Part B. 29(5), 589–602 (1998)CrossRefGoogle Scholar
  33. 33.
    Aymerich, F., Dore, F., Priolo, P.: Simulation of multiple delaminations in impacted cross-ply laminates using a finite element model based on cohesive interface elements. Compos. Sci. Technol. 69(11–12), 1699–1709 (2009)CrossRefGoogle Scholar
  34. 34.
    Aymerich, F., Dore, F., Priolo, P.: Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements. Compos. Sci. Technol. 68(12), 2383–2390 (2008)CrossRefGoogle Scholar
  35. 35.
    Maimí, P., Camanho, P.P., Mayugo, J.A., Dávila, C.G.: A continuum damage model for composite laminates: Part I – Constitutive model. Mech. Mater. 39(10), 897–908 (2007)CrossRefGoogle Scholar
  36. 36.
    Maimí, P., Camanho, P.P., Mayugo, J.A., Dávila, C.G.: A continuum damage model for composite laminates: Part II – Computational implementation and validation. Mech. Mater. 39(10), 909–919 (2007)CrossRefGoogle Scholar
  37. 37.
    Rivallant, S., Bouvet, C., Hongkarnjanakul, N.: Failure analysis of CFRP laminates subjected to compression after impact: FE simulation using discrete interface elements. Compos. Part A. 55, 83–93 (2013)CrossRefGoogle Scholar
  38. 38.
    Puck, A., Kopp, J., Knops, M.: Guidelines for the determination of the parameters in Puck's action plane strength criterion. Compos. Sci. Technol. 62(3), 371–378 (2001)CrossRefGoogle Scholar
  39. 39.
    Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58(7), 1045–1067 (1998)CrossRefGoogle Scholar
  40. 40.
    Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62(12–13), 1633–1662 (2001)Google Scholar
  41. 41.
    Hashin, Z.: Failure criteria for unidirectional composites. J. Appl. Mech. 47(2), 329–334 (1980)Google Scholar
  42. 42.
    Perillo G., Shchebetov S., Echtermeyer A.T.: Static ply properties: HiPer-tex™/Epoxy composite. Composites and Polymers Report Series. Trondheim: NTNU - Department of Engineering Design and Materials. p. 12 (2012)Google Scholar
  43. 43.
    ASTM D7136 / D7136M: Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. American Society for Tesing Materials (2012)Google Scholar
  44. 44.
    González J.E.V.: Simulation of interlaminar and intralaminar damage in polymer-based composites for aeronautical applications under impact loading. PhD Thesis. (2011)Google Scholar
  45. 45.
    Lopes, C.S., Camanho, P.P., Gürdal, Z., Maimí, P., González, E.V.: Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations. Compos. Sci. Technol. 69(7–8), 937–947 (2009)Google Scholar
  46. 46.
    Zhang, X., Davies, G.A.O., Hitchings, D.: Impact damage with compressive preload and post-impact compression of carbon composite plates. Int. J. Impact Eng. 22(5), 485–509 (1999)CrossRefGoogle Scholar
  47. 47.
    Sanchez-Saez, S., Barbero, E., Zaera, R., Navarro, C.: Compression after impact of thin composite laminates. Compos. Sci. Technol. 65(13), 1911–1919 (2005)CrossRefGoogle Scholar
  48. 48.
    ASTM D7137 / D7137M: Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. American Society for Testing Materials (2007)Google Scholar
  49. 49.
    Perillo G., Vedvik N.P., Echtermeyer A.: Numerical analyses of low velocity impacts on composite. Advanced modelling techniques. Proceedings of the Simulia Customer Conference (2012). May 15-17, Providence RI, USAGoogle Scholar
  50. 50.
    Abrate, S., Ferrero, J.F., Navarro, P.: Cohesive zone models and impact damage predictions for composite structures. Meccanica. 50(10), 2587–2620 (2015)CrossRefGoogle Scholar
  51. 51.
    Abaqus I. Abaqus Version 6.14 User's manual. (2014)Google Scholar
  52. 52.
    Abaqus 6.14: Analysis User's Manual, ©Hibbitt, Karlsson & Sorensen, Inc. U.S.A. 2000Google Scholar
  53. 53.
    Turon, A., Dávila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74(10), 1665–1682 (2007)CrossRefGoogle Scholar
  54. 54.
    Caputo, F., Lamanna, G., De Luca, A., Borrelli, R., Franchitti, S.: Global-Local FE Simulation of a Plate LVI Test. Struct. Durab. & Health Monit. – TechScience. 9(3), 253–267 (2013)Google Scholar
  55. 55.
    Borrelli, R., Franchitti, S., Di Caprio, F., Romano, F., Mercurio, U.: A numerical procedure for the virtual compression after impact analysis. Adv. Compos. Lett. 24(4), 57–67 (2015)Google Scholar
  56. 56.
    Tan, W., Falzon, B.G., Chiu, L.N.S., Price, M.: Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates. Compos. Part A. 71, 212–226 (2015)CrossRefGoogle Scholar
  57. 57.
    Lancaster J.K.: The effect of carbon fibre reinforcement on the friction and wear of polymers. J. Phys. D: Appl. Phys. 1(5), (1968)Google Scholar
  58. 58.
    Schön, J.: Coefficient of friction of composite delamination surfaces. Wear. 237(1), 77–89 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.SINTEF Material and chemistryTrondheimNorway
  2. 2.Università degli studi della Campania “Luigi Vanvitelli”AversaItaly

Personalised recommendations