Applied Composite Materials

, Volume 25, Issue 2, pp 415–423 | Cite as

Mechanical Properties and Thermal Shock Resistance Analysis of BNNT/Si3N4 Composites

  • Shouren Wang
  • Gaoqi Wang
  • Daosheng Wen
  • Xuefeng Yang
  • Liying Yang
  • Peiquan Guo


BNNT/Si3N4 ceramic composites with different weight amount of BNNT fabricated by hot isostatic pressing were introduced. The mechanical properties and thermal shock resistance of the composites were investigated. The results showed that BNNT-added ceramic composites have a finer and more uniform microstructure than that of BNNT-free Si3N4 ceramic because of the retarding effect of BNNT on Si3N4 grain growth. The addition of 1.5 wt.% BNNT results in simultaneous increase in flexural strength, fracture toughness, and thermal shock resistance. The analysis of the results indicates that BNNT brings many thermal transport channels in the microstructure, increasing the efficiency of thermal transport, therefore results in increase of thermal shock resistance. In addition, BNNT improves the residual flexural strength of composites by crack deflection, bridging, branching and pinning, which increase the crack propagation resistance.


Microstructure BNNT Si3N4 Mechanical property Thermal shock resistance 



This work was supported by the National Natural Science Foundation of P.R. China for the financial support (ID: 51372101, 51405195), Distinguished Middle-Aged and Young Scientist Encourage and Reward Foundation of Shandong Province (ID: ZR2016EMB01) and Taishan Scholar Engineering Special Funding (2016-2020).


  1. 1.
    Li, Y., Han, W., Chen, G., Cheng, Y., Yang, Q.: The microstructure and thermal diffusivity of carbon nanostructures Si3N4 composites processed using spark plasma sintering. Ceram. Int. 43, 3435–3438 (2016)CrossRefGoogle Scholar
  2. 2.
    Kovalčíková, A., Balko, J., Balázsi, C., Hvizdoš, P., Dusza, J.: Influence of hbn content on mechanical and tribological properties of Si3N4/BN ceramic composites. J. Eur. Ceram. Soc. 34, 3319–3328 (2014)CrossRefGoogle Scholar
  3. 3.
    Bocanegra-Bernal, M.H., Matovic, B.: Dense and near-net-shape fabrication of Si3N4 ceramics. Mater. Sci. Eng. A. 500, 130–149 (2009)CrossRefGoogle Scholar
  4. 4.
    Jiang, X.F., Weng, Q.H., Wang, X.B., Li, X., Zhang, J., Golberg, D., et al.: Recent progress on fabrications and applications of boron nitride nanomaterials: a review. J. Mater. Sci. Technol. 31, 589–598 (2015)CrossRefGoogle Scholar
  5. 5.
    Kawai, C.: Effect of grain size distribution on the strength of porous Si3N4 ceramics composed of elongated β- Si3N4 grains. J. Mater. Sci. 36, 5713–5717 (2001)CrossRefGoogle Scholar
  6. 6.
    Li, S., Yong, H., Wang, C., Zan, Q., Li, C.: Mechanical properties of Si3N4/BN fibrous monolithic ceramics at elevated-temperature. J. Mater. Sci. 36, 4103–4106 (2001)CrossRefGoogle Scholar
  7. 7.
    Zhang, H., Lv, J., Zhuang, S., Chen, Y., Gu, S.: Effect of WSi2 and Si3N4 contents on the thermal expansion behaviors of (Mo,W)Si2-Si3N4 composites. Ceram. Int. 43, 2847–2852 (2016)CrossRefGoogle Scholar
  8. 8.
    Bi, J.Q., Wang, W.L., Qi, Y.X., Bai, Y.J., Pang, L.L., Zhu, H.L., et al.: Large-scale synthesis of BN nanotubes using carbon nanotubes as template. Mater. Lett. 63, 1299–1302 (2009)CrossRefGoogle Scholar
  9. 9.
    Liu, H., Chai, Y., Huang, C., Liu, H., Wang, J.: Effect of boron nitride nanotubes content on mechanical properties and microstructure of Ti(C,N)-based cermets. Ceram. Int. 41, 2813–2818 (2015)CrossRefGoogle Scholar
  10. 10.
    Du, M., Bi, J.Q., Wang, W.L., Sun, X.L., Long, N.N.: Microstructure and properties of SiO2 matrix reinforced by bn nanotubes and nanoparticles. J. Alloys Compd. 509, 9996–10002 (2011)CrossRefGoogle Scholar
  11. 11.
    Chen, Y.F., Bi, J.Q., Wang, W.L., Zhao, Y., You, G.L., Yin, C.L., et al.: Toughening in boron nitride nanotubes/silicon nitride composites. Mat. Sci. Eng. A-struct. 590, 16–20 (2014)CrossRefGoogle Scholar
  12. 12.
    Hurst, J.: Boron nitride nanotubes, silicon carbide nanotubes, and carbon nanotubes-a comparison of properties and applications. Nanotube. Superfiber. Mater. 36, 267–287 (2014)CrossRefGoogle Scholar
  13. 13.
    Yu, H.H., Wang, S.R., Yang, L.L.: R-Curve Behavior of Si3N4/BNNT Composites. Appl. Compos. Mater. 20, 947–960 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Shouren Wang
    • 1
  • Gaoqi Wang
    • 1
  • Daosheng Wen
    • 1
  • Xuefeng Yang
    • 1
  • Liying Yang
    • 1
  • Peiquan Guo
    • 1
  1. 1.School of mechanical engineeringUniversity of JinanJinanChina

Personalised recommendations