Skip to main content
Log in

Geometrical analysis of woven fabric microstructure based on micron-resolution computed tomography data

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The global mechanical properties of textiles such as elasticity and strength, as well as transport properties such as permeability depend strongly on the microstructure of the textile. Textiles are heterogeneous structures with highly anisotropic material properties, including local fiber orientation and local fiber volume fraction. In this paper, an algorithm is presented to generate a virtual 3D–model of a woven fabric architecture with information about the local fiber orientation and the local fiber volume fraction. The geometric data of the woven fabric impregnated with resin was obtained by micron-resolution computed tomography (μCT). The volumetric μCT-scan was discretized into cells and the microstructure of each cell was analyzed and homogenized. Furthermore, the discretized data was used to calculate the local permeability tensors of each cell. An example application of the analyzed data is the simulation of the resin flow through a woven fabric based on the determined local permeability tensors and on Darcy’s law. The presented algorithm is an automated and robust method of going from μCT-scans to structural or flow models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Laessig R, Eisenhut M, Mathias A, Schulte R, Peters F, Kuehnemann T, et al.: Series production of high-strength composites: Perspectives for the German engineering industry. Roland Berger and VDMA. (2012)

  2. Middendorf P, Metzner C. Aerospace applications of non-crimp fabric composites. In: Non-crimp fabric composites: Manufacturing, properties and applications, Ed.: Lomov, S. Woodhead Publishing in materials; Oxford and Philadelphia: Woodhead Pub; 2011

  3. Skoeck-Hartmann B, Gries T. Automotive applications of non-crimp fabric composites. In: Non-crimp fabric composites: Manufacturing, properties and applications, Ed.: Lomov, S. Woodhead Publishing in materials; Oxford and Philadelphia: Woodhead Pub; 2011

  4. Beier, U., Fischer, F., Sandler, J., Altstadt, V., Weimer, C., Buchs, W.: Mechanical performance of carbon fibre-reinforced composites based on stitched preforms. Compos. A: Appl. Sci. Manuf. 38(7), 1655–1663 (2007)

    Article  Google Scholar 

  5. Bibo, G.A., Hogg, P.J., Backhouse, R., Mills, A.: Carbon-fibre non-crimp fabric laminates for cost-effective damage-tolerant structures. Compos. Sci. Technol. 58(1), 129–143 (1998)

    Article  Google Scholar 

  6. Parnas, R.: Liquid Composite Molding. Hanser Gardner publications, Munich (2000)

  7. Dumont, P., Vassal, J.-P., Orgéas, L., Michaud, V., Favier, D., Månson, J.A.-E.: Processing, characterization and rheology of transparent concentrated fibre bundle suspensions. Rheol. Acta. 46, 639–651 (2007)

    Article  Google Scholar 

  8. Lai, C., Young, W.: Model resin permeation of fibre reinforcements after shear deformation. Polym. Compos. 18, 6428 (1997)

    Google Scholar 

  9. Smith, P., Rudd, C., Long, A.: The effect of shear deformation on the processing and mechanical properties of aligned reinforcements. Compos. Sci. Technol. 57, 327–344 (1997)

    Article  Google Scholar 

  10. Zako, M., Uetsuji, Y., Kurashiki, T.: Finite element analysis of damaged woven fabric composite materials. Compos. Sci. Technol. 63, 507–516 (2003)

    Article  Google Scholar 

  11. Bahei-El-Din, Y.A., Rajendran, A.M., Zikry, M.A.: A micromechanical model for damage progression in woven composite systems. Int. J. Solids Struct. 41, 2307–2330 (2004)

    Article  Google Scholar 

  12. Pickett, A.K., Fouinneteau, M.R.C.: Material characterisation and calibration of a meso-mechanical damage model for braid reinforced composites. Compos. Part A. 37, 368–377 (2006)

    Article  Google Scholar 

  13. Creech, G., Pickett, A.: Meso-modelling of non-crimp fabric composites for coupled drape and failure analysis. J. Mater. Sci. 41(20), 6725–6736 (2006)

    Article  Google Scholar 

  14. Buet-Gautier, K., Boisse, P.: Experimental Analysis and Modeling of Biaxial Mechanical Behavior of Woven Composite Reinforcements. Exp. Mech. 41(3), 260–269 (2001)

    Article  Google Scholar 

  15. Bayraktar, H.; Tsukrov, I.; Giovinazzo, M.; et al.: Predicting cure-induced microcracking in 3D woven composites with realistic simulation technology. Proceedings of Society for the Advancement of Material and Process Engineering (SAMPE) Conference (2012)

  16. Zou Z, Zheng S, Cheng L, Xi B, Yao J: Effect of Some Variables on the Fibre Packing Pattern in a Yarn Cross-section for Vortex Spun Yarn. FIBRES & TEXTILES in Eastern Europe 2014, Vol. 22, No. 2(104): 40–46

  17. Badel, P., Vidal-Sallé, E., Maire, E., Boisse, P.: Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale. Compos. Sci. Technol. 68(12), 2433–2440 (2008)

    Article  Google Scholar 

  18. Desplentere, F., Lomov, S.V., Woerdeman, D.L., Verpoest, I., Wevers, M., Bogdanovich, A.: Micro-CT characterization of variability in 3D textile architecture. Compos. Sci. Technol. 65, 1920–1930 (2005)

    Article  Google Scholar 

  19. Latila, P., Orgéasa, L., Geindreaua, C., Dumontb, P.J.J., Rolland du Roscoata, S.: Towards the 3D in situ characterisation of deformation micro-mechanisms within a compressed bundle of fibres. Compos. Sci. Technol. 71(4), 480–488 (2011)

    Article  Google Scholar 

  20. Fast, T., Scott, A.E., Bale, H.A., Cox, B.N.: Topological and Euclidean metrics reveal spatially nonuniform strure in the entanglement of stochastic fiber bundles. J. Mater. Sci. 50, 2370–2398 (2015)

    Article  Google Scholar 

  21. Buzug, T. M.: Einführung in die Computertomographie, mathematische Grundlagen der Bildrekonstruktion. Springer-Verlag, Heidelberg (2004)

  22. Image Processing Toolbox in MATLAB, Version 14.x from The MathWorks, Inc. Natick, Massachusetts, United States and elements of the included Image Processing Toolbox

  23. Gebart, B.: Permeability of Unidirectional Reinforcements for RTM. J. Compos. Mater. 26, 1100-1133 (1992)

  24. Darcy, H.: Les fontaines publiques de la Ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  25. Datasheet for used resin: MGS® RIM 135 HEXION, 12/2006

  26. nanotom® from the company phoenix|x-ray

  27. Krieger, Helga.: Auf Computertomographiedaten basierte Strömungssimulation des Tränkverhaltens von Verstärkungstextilien; Diplomarbeit am Institut für Textiltechnik der RWTH Aachen, Aachen Juni 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helga Krieger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krieger, H., Seide, G., Gries, T. et al. Geometrical analysis of woven fabric microstructure based on micron-resolution computed tomography data. Appl Compos Mater 25, 399–413 (2018). https://doi.org/10.1007/s10443-017-9626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9626-4

Keywords

Navigation