Advertisement

Applied Composite Materials

, Volume 25, Issue 2, pp 399–413 | Cite as

Geometrical analysis of woven fabric microstructure based on micron-resolution computed tomography data

  • Helga Krieger
  • Gunnar Seide
  • Thomas Gries
  • Scott E. Stapleton
Article
  • 512 Downloads

Abstract

The global mechanical properties of textiles such as elasticity and strength, as well as transport properties such as permeability depend strongly on the microstructure of the textile. Textiles are heterogeneous structures with highly anisotropic material properties, including local fiber orientation and local fiber volume fraction. In this paper, an algorithm is presented to generate a virtual 3D–model of a woven fabric architecture with information about the local fiber orientation and the local fiber volume fraction. The geometric data of the woven fabric impregnated with resin was obtained by micron-resolution computed tomography (μCT). The volumetric μCT-scan was discretized into cells and the microstructure of each cell was analyzed and homogenized. Furthermore, the discretized data was used to calculate the local permeability tensors of each cell. An example application of the analyzed data is the simulation of the resin flow through a woven fabric based on the determined local permeability tensors and on Darcy’s law. The presented algorithm is an automated and robust method of going from μCT-scans to structural or flow models.

Keywords

Resin transfer molding (RTM) Fabrics/ textiles Resin flow Permeability 

References

  1. 1.
    Laessig R, Eisenhut M, Mathias A, Schulte R, Peters F, Kuehnemann T, et al.: Series production of high-strength composites: Perspectives for the German engineering industry. Roland Berger and VDMA. (2012)Google Scholar
  2. 2.
    Middendorf P, Metzner C. Aerospace applications of non-crimp fabric composites. In: Non-crimp fabric composites: Manufacturing, properties and applications, Ed.: Lomov, S. Woodhead Publishing in materials; Oxford and Philadelphia: Woodhead Pub; 2011Google Scholar
  3. 3.
    Skoeck-Hartmann B, Gries T. Automotive applications of non-crimp fabric composites. In: Non-crimp fabric composites: Manufacturing, properties and applications, Ed.: Lomov, S. Woodhead Publishing in materials; Oxford and Philadelphia: Woodhead Pub; 2011Google Scholar
  4. 4.
    Beier, U., Fischer, F., Sandler, J., Altstadt, V., Weimer, C., Buchs, W.: Mechanical performance of carbon fibre-reinforced composites based on stitched preforms. Compos. A: Appl. Sci. Manuf. 38(7), 1655–1663 (2007)CrossRefGoogle Scholar
  5. 5.
    Bibo, G.A., Hogg, P.J., Backhouse, R., Mills, A.: Carbon-fibre non-crimp fabric laminates for cost-effective damage-tolerant structures. Compos. Sci. Technol. 58(1), 129–143 (1998)CrossRefGoogle Scholar
  6. 6.
    Parnas, R.: Liquid Composite Molding. Hanser Gardner publications, Munich (2000)Google Scholar
  7. 7.
    Dumont, P., Vassal, J.-P., Orgéas, L., Michaud, V., Favier, D., Månson, J.A.-E.: Processing, characterization and rheology of transparent concentrated fibre bundle suspensions. Rheol. Acta. 46, 639–651 (2007)CrossRefGoogle Scholar
  8. 8.
    Lai, C., Young, W.: Model resin permeation of fibre reinforcements after shear deformation. Polym. Compos. 18, 6428 (1997)Google Scholar
  9. 9.
    Smith, P., Rudd, C., Long, A.: The effect of shear deformation on the processing and mechanical properties of aligned reinforcements. Compos. Sci. Technol. 57, 327–344 (1997)CrossRefGoogle Scholar
  10. 10.
    Zako, M., Uetsuji, Y., Kurashiki, T.: Finite element analysis of damaged woven fabric composite materials. Compos. Sci. Technol. 63, 507–516 (2003)CrossRefGoogle Scholar
  11. 11.
    Bahei-El-Din, Y.A., Rajendran, A.M., Zikry, M.A.: A micromechanical model for damage progression in woven composite systems. Int. J. Solids Struct. 41, 2307–2330 (2004)CrossRefGoogle Scholar
  12. 12.
    Pickett, A.K., Fouinneteau, M.R.C.: Material characterisation and calibration of a meso-mechanical damage model for braid reinforced composites. Compos. Part A. 37, 368–377 (2006)CrossRefGoogle Scholar
  13. 13.
    Creech, G., Pickett, A.: Meso-modelling of non-crimp fabric composites for coupled drape and failure analysis. J. Mater. Sci. 41(20), 6725–6736 (2006)CrossRefGoogle Scholar
  14. 14.
    Buet-Gautier, K., Boisse, P.: Experimental Analysis and Modeling of Biaxial Mechanical Behavior of Woven Composite Reinforcements. Exp. Mech. 41(3), 260–269 (2001)CrossRefGoogle Scholar
  15. 15.
    Bayraktar, H.; Tsukrov, I.; Giovinazzo, M.; et al.: Predicting cure-induced microcracking in 3D woven composites with realistic simulation technology. Proceedings of Society for the Advancement of Material and Process Engineering (SAMPE) Conference (2012)Google Scholar
  16. 16.
    Zou Z, Zheng S, Cheng L, Xi B, Yao J: Effect of Some Variables on the Fibre Packing Pattern in a Yarn Cross-section for Vortex Spun Yarn. FIBRES & TEXTILES in Eastern Europe 2014, Vol. 22, No. 2(104): 40–46Google Scholar
  17. 17.
    Badel, P., Vidal-Sallé, E., Maire, E., Boisse, P.: Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale. Compos. Sci. Technol. 68(12), 2433–2440 (2008)CrossRefGoogle Scholar
  18. 18.
    Desplentere, F., Lomov, S.V., Woerdeman, D.L., Verpoest, I., Wevers, M., Bogdanovich, A.: Micro-CT characterization of variability in 3D textile architecture. Compos. Sci. Technol. 65, 1920–1930 (2005)CrossRefGoogle Scholar
  19. 19.
    Latila, P., Orgéasa, L., Geindreaua, C., Dumontb, P.J.J., Rolland du Roscoata, S.: Towards the 3D in situ characterisation of deformation micro-mechanisms within a compressed bundle of fibres. Compos. Sci. Technol. 71(4), 480–488 (2011)CrossRefGoogle Scholar
  20. 20.
    Fast, T., Scott, A.E., Bale, H.A., Cox, B.N.: Topological and Euclidean metrics reveal spatially nonuniform strure in the entanglement of stochastic fiber bundles. J. Mater. Sci. 50, 2370–2398 (2015)CrossRefGoogle Scholar
  21. 21.
    Buzug, T. M.: Einführung in die Computertomographie, mathematische Grundlagen der Bildrekonstruktion. Springer-Verlag, Heidelberg (2004)Google Scholar
  22. 22.
    Image Processing Toolbox in MATLAB, Version 14.x from The MathWorks, Inc. Natick, Massachusetts, United States and elements of the included Image Processing Toolbox
  23. 23.
    Gebart, B.: Permeability of Unidirectional Reinforcements for RTM. J. Compos. Mater. 26, 1100-1133 (1992)Google Scholar
  24. 24.
    Darcy, H.: Les fontaines publiques de la Ville de Dijon. Dalmont, Paris (1856)Google Scholar
  25. 25.
    Datasheet for used resin: MGS® RIM 135 HEXION, 12/2006Google Scholar
  26. 26.
    nanotom® from the company phoenix|x-rayGoogle Scholar
  27. 27.
    Krieger, Helga.: Auf Computertomographiedaten basierte Strömungssimulation des Tränkverhaltens von Verstärkungstextilien; Diplomarbeit am Institut für Textiltechnik der RWTH Aachen, Aachen Juni 2010Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Massachusetts LowellLowellUSA
  2. 2.Institut für Textiltechnik (ITA) of RWTH Aachen UniversityAachenGermany
  3. 3.Aachen-Maastricht Institute for Biobased MaterialsMaastricht UniversityGeleenNetherlands

Personalised recommendations