Applied Composite Materials

, Volume 25, Issue 2, pp 381–398 | Cite as

Determination of Fracture Parameters for Multiple Cracks of Laminated Composite Finite Plate

  • Amit Kumar Srivastava
  • P. K. Arora
  • Sharad Chandra Srivastava
  • Harish Kumar
  • M. K. Lohumi


A predictive method for estimation of stress state at zone of crack tip and assessment of remaining component lifetime depend on the stress intensity factor (SIF). This paper discusses the numerical approach for prediction of first ply failure load (FL), progressive failure load, SIF and critical SIF for multiple cracks configurations of laminated composite finite plate using finite element method (FEM). The Hashin and Chang failure criterion are incorporated in ABAQUS using subroutine approach user defined field variables (USDFLD) for prediction of progressive fracture response of laminated composite finite plate, which is not directly available in the software. A tensile experiment on laminated composite finite plate with stress concentration is performed to validate the numerically predicted subroutine results, shows excellent agreement. The typical results are presented to examine effect of changing the crack tip distance (S), crack offset distance (H), and stacking fiber angle (θ) on FL, and SIF .


Stress intensity factor Finite element analysis Offset-crack Progressive fracture parameters 


a1, a2

through crack length, mm


edge crack length, mm


modulus of elasticity, MPa

E1, E2

modulus of elasticity in 1 and 2-direction, MPa

\( {E}_1^d,{E}_2^d \)

degraded stiffness in 1 and 2-direction respectively, MPa


applied load, N


displacement, mm


first ply failure load, N


field variable represents matrix failure, fiber failure, and shear failure


stress component. Subscript i, j represent the direction of load and fibre orientation respestively


failure load, N


modulus of rigidity in 1and 2-direction, MPa


crack offset distance, mm


height of plate, mm


mode − 1 stress intensity factor, MPa(mm)1/2


plane stress fracture toughness, MPa(mm)1/2


longitudinal shear strength


crack tip distance, mm


lamina or ply thickness, mm


laminate thickness, mm


width of plate, mm


longitudinal tensile strength, MPa


longitudinal compressive strength, MPa


transverse tensile strength, MPa


transverse compressive strength, MPa


degradation coefficient, set to 1


nonlinearity factor


fiber orientation angle


poission’s ratio


crack initiation angle


  1. 1.
    Chang, F.K., Chang, K.Y.: A progressive damage model for laminated composites containing stress concentrations. J. Compos. Mater. 21, 834–855 (1987)CrossRefGoogle Scholar
  2. 2.
    Tay, T.E., Liu, G., Yudhanto, A.: Tan VBC. A micro-macro approach to modeling progressive damage in composite structures. Inter J Damage Mech. 17, 5–28 (2008)CrossRefGoogle Scholar
  3. 3.
    Liu, P.F., Zheng, J.Y.: Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics. Mater Sci Eng A-Struct. 485, 711–717 (2008)CrossRefGoogle Scholar
  4. 4.
    Kim, R.Y., Soni, S.R.: Experimental and analytical studies on the onset of delamination in laminated composites. J. Compos. Mater. 18, 70–80 (1984)CrossRefGoogle Scholar
  5. 5.
    Raju, I.S., Crews Jr., J.H., Aminpour, M.A.: Convergence of strain energy release rate components for edge-delaminated composite laminates. Eng. Fract. Mech. 30, 383–396 (1988)CrossRefGoogle Scholar
  6. 6.
    Camanho, P.P., Davila, C.G., de Moura, M.F.: Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37, 1415–1438 (2003)CrossRefGoogle Scholar
  7. 7.
    Xiea, D., Biggers Jr., S.B.: Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elem. Anal. Des. 42, 977–984 (2006)CrossRefGoogle Scholar
  8. 8.
    Sun, X.S., Tan, V.B.C., Tay, T.E.: Micromechanics-based progressive failure analysis of fibre-reinforced composites with non-iterative element-failure method. Comput. Struct. 89, 1103–1116 (2011)CrossRefGoogle Scholar
  9. 9.
    Liu, P.F., Hou, S.J., Chu, J.K., Hu, X.Y., Zhou, C.L., Liu, Y.L., Zheng, J.Y., Zhao, A., Yan, L.: Finite element analysis of post buckling and delamination of composite laminates using virtual crack closure technique. Compos. Struct. 93, 1549–1560 (2011)CrossRefGoogle Scholar
  10. 10.
    Papanikos, P., Tserpes, K.I., Labeas, G., Pantelakis, S.: Progressive damage modelling of bonded composite repairs. Theor. Appl. Fract. Mech. 43, 189–198 (2005)CrossRefGoogle Scholar
  11. 11.
    de Morais, A.B., de Moura, M.F.S.F.: Assessment of initiation criteria used in interlaminar fracture tests of composites. Eng. Fract. Mech. 72, 2615–2627 (2005)CrossRefGoogle Scholar
  12. 12.
    Guo-dong, F., Liang, J., Wang, B.-l.: Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos. Struct. 89, 126–133 (2009)CrossRefGoogle Scholar
  13. 13.
    Lin, X.B., Smith, R.A.: Stress intensity factors for corner cracks emanating from fastener holes under tension. Eng. Fract. Mech. 62, 535–553 (1999)CrossRefGoogle Scholar
  14. 14.
    Pereira, J.P., Duarte, C.A.: Extraction of stress intensity factors from generalized finite element solutions. Eng Anal Bound Elem. 29, 397–413 (2005)CrossRefGoogle Scholar
  15. 15.
    JIH, C.J., SUN, C.T.: Evaluation of a finite element based crack-closure method for calculating static and dynamic strain energy release rates. Eng. Fract. Mech. 37(2), 313–322 (1990)CrossRefGoogle Scholar
  16. 16.
    Lee, J.D., Liebowitz, H.: The nonlinear and biaxial effects on energy release rate, j-integral and stress intensity factor. Eng. Fract. Mech. 9, 765–779 (1977)CrossRefGoogle Scholar
  17. 17.
    Labeas, G., Kermanidis, T.: Stress multiaxiality factor for crack growth prediction using the strain energy density theory. Theor. Appl. Fract. Mech. 45, 100–107 (2006)CrossRefGoogle Scholar
  18. 18.
    Courtin, S., Gardin, C., Bezine, G., Hadj Hamouda, H.B.: Advantages of the J-integral approach for calculating stress intensity factors when using the commercial finite element software ABAQUS. Eng. Fract. Mech. 72, 2174–2185 (2005)CrossRefGoogle Scholar
  19. 19.
    Jones, I.S., Rothwell, G.: Reference stress intensity factors with application to weight functions for internal circumferential cracks in cylinders. Eng. Fract. Mech. 68, 435–454 (2001)CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Wu, Z., Liang, Y., Liu, X.: Numerical methods for determination of stress intensity factors of singular stress field. Eng. Fract. Mech. 75, 4793–4803 (2008)CrossRefGoogle Scholar
  21. 21.
    Rice, J.R.: A path independent integral and the approximate analysis of strain concentrations by notches and cracks. J. Appl. Mech. 35, 376–386 (1968)CrossRefGoogle Scholar
  22. 22.
    Rotem, A.: Prediction of laminate failure with the rotem failure criterion. Compos. Sci. Technol. 58(7), 1083–1094 (1998)CrossRefGoogle Scholar
  23. 23.
    Chang, F.K., Lessard, L.B.: Damage tolerance of laminated composites containing an open hole and subjected to compressive loading. J. Compos. Mater. 25, 2–43 (1991)CrossRefGoogle Scholar
  24. 24.
    Srivastava, A.K., Achchhe, L.: Determination of fracture parameters for multiple edge cracks of a finite plate. AIAA, J Aircr. 50(3), 901–910 (2013)CrossRefGoogle Scholar
  25. 25.
    Kaman, M.O.: Effect of fibre orientation on fracture toughness of laminated composites plates. Eng. Fract. Mech. 78, 2521–2534 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Amit Kumar Srivastava
    • 1
  • P. K. Arora
    • 2
  • Sharad Chandra Srivastava
    • 3
  • Harish Kumar
    • 4
  • M. K. Lohumi
    • 2
  1. 1.Scientist-‘F’, DRDONew DelhiIndia
  2. 2.Galgotias College of Engineering and TechnologyGreater NoidaIndia
  3. 3.Birla Institute of Technology, MesraRanchiIndia
  4. 4.CSIR – National Physical LaboratoryNew DelhiIndia

Personalised recommendations