Applied Composite Materials

, Volume 25, Issue 2, pp 309–320 | Cite as

Experimental Study and Numerical Modelling of Low Velocity Impact on Laminated Composite Reinforced with Thin Film Made of Carbon Nanotubes

  • A. El Moumen
  • M. Tarfaoui
  • O. Hassoon
  • K. Lafdi
  • H. Benyahia
  • M. Nachtane


In this work, polymer laminated composites based on Epon 862 Epoxy resin, T300 6 k carbon fibers and carbon nanotubes (CNTs) were tested with the aim to elucidate the effect of CNTs on impact properties including impact force and capacity to absorb impact energy. The polymer matrix was reinforced by a random distribution of CNTs with fraction ranging from 0.5 to 4.wt%. Composite panels were manufactured by using the infusion process. Taylor impact test was used to obtain the impact response of specimens. Projectile manufactured from a high strength and hardened steel with a diameter of 20 mm and 1.5 kg of mass was launched by a compressed gas gun within the velocity of 3 m/s. Impact force histories and absorbed energy of specimens were recorded. A numerical model was employed to simulate the impact performance. This model has been accomplished by forming a user established subroutine (VUMAT) and executing it in ABAQUS software. Finally, the effect of CNTs amount on dynamic properties of laminated composites was discussed.


Carbon nanotubes Polymer composite materials Low-velocity impact Dynamic properties Numerical modelling Damage modelling VUMAT 



This work was partially funded by DGA (Direction générale de l’armement - Ministry of Defense), MRIS project. The Authors of this paper gratefully acknowledge the financial support of the DGA, France. Acknowledgments have also addressed to Pr. Bruno Mortaigne at DGA-DS-MRIS, RDS Matériaux Chimie Energie departement.


  1. 1.
    Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Bauhofer, W., Schulte, K.: Influence of nano-modification on the mechanical and electrical properties of conventional fiber-reinforced composites. Compos. A-Appl. Sci. 36, 1525–1535 (2005)CrossRefGoogle Scholar
  2. 2.
    Tarfaoui, M., Lafdi, K., El Moumen, A.: Mechanical properties of carbon nanotubes based polymer composites. Compos. Part B. 103, 113–121 (2016)CrossRefGoogle Scholar
  3. 3.
    El Moumen, A., Tarfaoui, M., Lafdi, K.: Mechanical characterization of carbon nanotubes based polymer composites using indentation tests. Compos. Part B. 114, 1–7 (2017)CrossRefGoogle Scholar
  4. 4.
    Garcia, E.J., Wardle, B.L., Hart, A.J., Yamamoto, N.: Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos. Sci. Technol. 68, 2034–2041 (2008)CrossRefGoogle Scholar
  5. 5.
    Warrier, A., Godara, A., Rochez, O., Mezzo, L., Luizi, F., Gorbatikh, L., et al.: The effect of adding carbon nanotubes to glass/epoxy composites in the fiber sizing and/or the matrix. Compos. A-Appl. Sci. 41, 532–538 (2010)CrossRefGoogle Scholar
  6. 6.
    Ashrafi, B., Guan, J., Mirjalili, V., Zhang, Y., Chun, L., Hubert, P., Simard, B., Kingston, C.T., Bourne, O., Johnston, A.: Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes. Compos. Sci. Technol. 71, 1569–1578 (2011)CrossRefGoogle Scholar
  7. 7.
    Soliman, E., Al-Haik, M., Taha, M.R.: On and off-axis tension behavior of fiber reinforced polymer composites incorporating multi-walled carbon nanotubes. J. Compos. Mater. 46, 1661–1675 (2011)CrossRefGoogle Scholar
  8. 8.
    Soliman, E.M., Sheyka, M.P., Taha, M.R.: Low-velocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes. Int. J. Impact Eng. 47, 39–47 (2012)CrossRefGoogle Scholar
  9. 9.
    Kostopoulos, V., Baltopoulos, A., Karapappas, P., Vavouliotis, A., Paipetis, A.: Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Compos. Sci. Technol. 70, 553–563 (2010)CrossRefGoogle Scholar
  10. 10.
    Benyahia, H., Tarfaoui, M., Datsyuk, V., El Moumen, A., Trotsenko, S., Reich, S.: Dynamic properties of hybrid composite structures based multiwalled carbon nanotubes. Compos. Sci. Technol. 148, 70–79 (2017)CrossRefGoogle Scholar
  11. 11.
    Laurenzi, S., Pastore, R., Giannini, G., Marchetti, M.: Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy. Compos. Struct. 99, 62–68 (2013)CrossRefGoogle Scholar
  12. 12.
    Hosur, M.V., Chowdhury, F., Jeelani, S.: Low-velocity impact response and ultrasonic NDE of woven carbon/epoxy–nanoclay nanocomposites. J. Compos. Mater. 41, 2195–2212 (2007)CrossRefGoogle Scholar
  13. 13.
    Guo, W., Xue, P., Yang, Y.: Nonlinear progressive damage model for composite laminates used for low-velocity impact. Appl. Math. Mech. 34, 1145–1154 (2013)CrossRefGoogle Scholar
  14. 14.
    Hashin, Z.: Failure criteria for undirectional fiber composites. J. Appl. Mech. 31, 223–232 (1980)CrossRefGoogle Scholar
  15. 15.
    Wang, S., Wu, L., Ma, L.: Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates. Mater. Des. 31, 118–125 (2010)CrossRefGoogle Scholar
  16. 16.
    Xin, S.H., Wen, H.M.: A progressive damage model for fiber reinforced plastic composites subjected to impact loading. Int. J. Impact Eng. 75, 40–52 (2015)CrossRefGoogle Scholar
  17. 17.
    Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber-reinforced materials. Compos. A: Appl. Sci. Manuf. 38, 2333–2341 (2007)CrossRefGoogle Scholar
  18. 18.
    El Moumen, A., Tarfaoui, M., Lafdi, K., Benyahia, H.: Dynamic properties of carbon nanotubes reinforced carbon fibers/epoxy textile composites under low velocity impact. Compos. Part B. 125, 1–8 (2017)CrossRefGoogle Scholar
  19. 19.
    Hassoon, O.H., Tarfaoui, M., El Moumen, A.: Progressive damage modeling in laminate composites under slamming impact water for naval applications. Compos. Struct. 167, 178–190 (2017)CrossRefGoogle Scholar
  20. 20.
    Nachtane, M., Tarfaoui, M., El Moumen, A., Saifaoui, D.: Damage prediction of horizontal axis marine current turbines under hydrodynamic, hydrostatic and impacts loads. Compos. Struct. 170, 146–157 (2017)CrossRefGoogle Scholar
  21. 21.
    Tarfaoui, M., El Moumen, A., Lafdi, K.: Progressive damage modeling in carbon fibers/carbon nanotubes reinforced polymer composites. Compos. Part B. 112, 185–195 (2016)CrossRefGoogle Scholar
  22. 22.
    Ren, Y., Jiang, H., Ji, W., Zhang, H., Xiang, J., Yuan, F.G.: Improvement of progressive damage model to predicting crashworthy composite corrugated plate. Appl. Compos. Mater. (2017). doi: 10.1007/s10443-017-9610-z
  23. 23.
    Wang, H., Ramakrishnan, K.R., Shankar, K.: Experimental study of the medium velocity impact response of sandwich panels with different cores. Mater. Des. 99, 68–82 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • A. El Moumen
    • 1
  • M. Tarfaoui
    • 1
  • O. Hassoon
    • 1
  • K. Lafdi
    • 2
  • H. Benyahia
    • 1
  • M. Nachtane
    • 1
  1. 1.ENSTA Bretagne, CNRS FRE 3744, IRDLBrestFrance
  2. 2.University of Dayton Research InstituteDaytonUSA

Personalised recommendations