Applied Composite Materials

, Volume 25, Issue 2, pp 299–308 | Cite as

Evaluation of Basalt Fibre Composites for Marine Applications

Article

Abstract

Basalt fibres offer potential for use in marine structures, but few data exist to evaluate the influence of seawater immersion on their mechanical behaviour. This paper provides the results from a study in which basalt fibre reinforced epoxy composites were aged in natural seawater at different temperatures. Tests were performed under quasi-static and cyclic loading, first in the as-received state then after saturation in natural seawater. Results are compared to those for an E-glass reinforced composite with the same epoxy matrix. They indicate similar mechanical performance for both materials after seawater saturation.

Keywords

Seawater Aging Fatigue Basalt fibre Epoxy Unidirectional Flexure 

References

  1. 1.
    Fiore, V., Scalici, T., Di Bella, G., Valenza, A.: A review on basalt fibre and its composites. Composites Part B. 74, 74–94 (2015)CrossRefGoogle Scholar
  2. 2.
    Sim, J., Park, C., Moon, D.Y.: Characteristics of basalt fibre as a strengthening material for concrete structures. Compos. Part B. 36, 504–512 (2005)CrossRefGoogle Scholar
  3. 3.
    Nasir, V., Karimipour, H., Taheri-Behrooz, F., Shokrieh, M.M.: Corrosion behavior and crack formation mechanism of basalt fibre in sulphuric acid. Corrosion Sci. 64, 1–7 (2012)CrossRefGoogle Scholar
  4. 4.
    Hao, L.C., Yu, W.D.: Evaluation of thermal protective performance of basalt fibre non-woven fabrics. J. Therm. Anal. Calorim. 100, 551–555 (2010)CrossRefGoogle Scholar
  5. 5.
    Ramachandran, B.E., Velpari, V., Balasubramanian, N.: Chemical durability studies on basalt fibres. J. Mater. Sci. 16, 3393–3397 (1981)CrossRefGoogle Scholar
  6. 6.
    Elshafie, S., Whittleston, G.: Evaluating the efficiency of basalt and glass Fibres on resisting the alkaline, acid, and thermal environments. American Journal of Materials Science. 6(1), 19–34 (2016)Google Scholar
  7. 7.
    Wei, B., Cao, H., Song, S.: Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater. Corrosion Sci. 53, 426–431 (2011)CrossRefGoogle Scholar
  8. 8.
    Liu, Q., Shaw, M.T., Parnas, R.S., McDonnell, M.: Investigation of basalt fiber composite aging behavior for applications in transportation. Polym. Compos. 27, P75–483 (2006)Google Scholar
  9. 9.
    Elgabbas, F., Ahmed, E.A., Benmokrane, B.: Physical and mechanical characteristics of new basalt-FRP bars for reinforcing concrete structures. Constr. Build. Mater. 95, 623–635 (2015)CrossRefGoogle Scholar
  10. 10.
    Wei, B., Cao, H., Song, S.: Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater. Corros. Sci. 53, 426–431 (2011)CrossRefGoogle Scholar
  11. 11.
    Subramanian, R.V., Shu, K.H.: Silane coupling agents for basalt fiber reinforced polymer composites. In: Ishida, H., Kumar, G. (eds.) Chapter in Molecular Characterization of Composite Interfaces, pp. 205–236. Springer (1985)Google Scholar
  12. 12.
    Manikandan, V., Winowlin Jappes, J.T., Suresh Kumar, S.M., Amuthakkannan, P.: Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Compos. Part B. 43, 812–818 (2012)CrossRefGoogle Scholar
  13. 13.
    Wu, Z., Wanga, X., Iwashita, K., Sasaki, T., Hamaguchi, Y.: Tensile fatigue behaviour of FRP and hybrid FRP sheets. Compos. Part B. 41, 396–402 (2010)CrossRefGoogle Scholar
  14. 14.
    Colombo, C., Vergani, L., Burman, M.: Static and fatigue characterisation of new basalt fibre reinforced composites. Compos. Struct. 94(3), 1165–1174 (2012)CrossRefGoogle Scholar
  15. 15.
    Zhao, X., Wang, X., Wu, Z., Zhu, Z.: Fatigue behavior and failure mechanism of basalt FRP composites under long-term cyclic loads. Int. Journal of Fatigue. 88, 58–67 (2016)CrossRefGoogle Scholar
  16. 16.
    Shi, J., Wang, Z., Wu, Z., Zhu, Z.: Fatigue behavior of basalt fiber-reinforced polymer tendons under a marine environment. Constr. Build. Mater. 137, 46–54 (2017)CrossRefGoogle Scholar
  17. 17.
    Davies, P., Germain, G., Gaurier, B., Boisseau, A., Perreux, D.: Evaluation of the durability of composite tidal turbine blades. Royal Society Philosophical Transactions A. 371, (February 2013)Google Scholar
  18. 18.
    Mandell JF, Fatigue behavior of fibre-resin composites in Developments in Reinforced Plastics 2, ed. G. Pritchard, 1982, Applied Science Publishers, pp 67–108Google Scholar
  19. 19.
    Beaumont PWR, Physical modeling of damage development in structural composite materials under stress. Chapter 13 in Fatigue in Composites, Ed B. Harris, CRC, 2003, pp 365–412Google Scholar
  20. 20.
    Van Paepegem W, Fatigue models for woven textile composite laminates. In fatigue of textile composites, Ed. V Carvelli and SV Lomov, 2015, pp 295–325, Woodhead PublishersGoogle Scholar
  21. 21.
    Boisseau, A., Davies, P., Thiebaud, F.: Fatigue behaviour of glass fibre reinforced composites for ocean energy conversion systems. Appl. Compos. Mater. 20(2), 145–155 (2013)CrossRefGoogle Scholar
  22. 22.
    IFREMER internal test results on unidirectional carbon fibre /M9.6 epoxy composites. October 2010Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.IFREMER Centre BretagneMarine Structures LaboratoryPlouzanéFrance
  2. 2.BASALTEX NVWevelgemBelgium

Personalised recommendations