Applied Composite Materials

, Volume 25, Issue 2, pp 269–298 | Cite as

NiTi SMA Wires Coupled with Kevlar Fabric: a Real Application of an Innovative Aircraft LE Slat System in SMAHC Material

  • M. Guida
  • F. Marulo
  • S. Russo


This paper investigates experimentally and numerically the response of a smart hybrid thermoplastic aircraft slat system subjected to a short-duration and high-frequency event like a birdstrike. The focus of the paper is to exploit the ability that superelastic shape memory alloys have to absorb and dissipate energy compared to conventional composite structures. The final objective of the work is to develop an innovative thermoplastic wing leading edge slat able to resist to an impact of 4-lb (1.8 kg) bird at speed of 350 kts (132 m/s), as requested by the aeronautical requirements. Aircraft leading edges must be certified for a proven level of bird impact resistance. In particular, the main structural requirement is to protect the torsion box and control devices from any significant damage caused by birdstrike in order to allow the aircraft to land safely. A clear increase of the composites toughness and higher absorbed energy levels before failure were also observed. This is due to the fact that SMA wires can absorb kinetic energy during the impact due to their remarkably large failure and recoverable strain and to their superelastic and hysteretic behaviour. The activities have been performed within the European Project COALESCE “Cost Efficient Advanced Leading Edge Structure”, funded by the Seventh Framework Program Theme 7 Transport (incl. Aeronautics).


Bird impact Aeronautical slat structure Thermoplastic material Shape Memory Alloy Composite structures 


  1. 1.
    Certification Specifications CS 25.631: Birdstrike damage. EASA Certification Specifications for Large Aeroplane (2003)Google Scholar
  2. 2.
    Barber, J.P., Wilbeck, J.S.: Characterization of bird impacts on rigid plate: Part 1, Air Force Flight Dynamics Laboratory, Technical Report No. AFFDL TR-75-05 (1975)Google Scholar
  3. 3.
    Barber, J.P., Taylor, H.R., Wilbeck, J.S.: Bird impact forces and pressures on rigid and compliance targets, Air Force Flight Dynamics Laboratory, Technical Report No. AFFDL TR-77-60 (1978)Google Scholar
  4. 4.
    Wilbeck, J.S.: Impact behaviour of low-strength projectiles, Air Force Flight Dynamics Laboratory, Technical Report, AFML TR-77-134 (1978)Google Scholar
  5. 5.
    Brockman, R.A.: Finite element analysis of soft body impact. University of Dayton Research Institute. Report No. AFWAL-TR-84-3035 (1984)Google Scholar
  6. 6.
    McNaughtan, I.I.: The design of leading edge and intact wall structures to resist bird impact. Royal Aircraft Establishment. Technical Report No. 72056 (1972)Google Scholar
  7. 7.
    Meo, M., Marulo, F., Guida, M., Russo, S.: Shape memory alloy hybrid composites for improved impact properties for aeronautical applications. Compos. Struct. 95, 756–766 (2013). doi: 10.1016/j.compstruct.2012.08.011 CrossRefGoogle Scholar
  8. 8.
    Paine, J.S.N., Rogers, G.A.: The response of SMA hybrid composite materials to low velocity impact. J. Intell. Mater. Syst. Struct. 5, 530–535 (1994)Google Scholar
  9. 9.
    Ahn, J.-H., Nguyen, K.-H., Park, Y.-B., Kweon, J.-H., Choi, J.-H.: A numerical study of the high-velocity impact response of a composite laminate using LS-DYNA. Int. J. Aeronaut. Space. 11(3), 221–226 (2010)CrossRefGoogle Scholar
  10. 10.
    Nguyen, K.-H., Ahn, J.-H., Kweon, J.-H., Choi, J.-H.: Optimization of composite laminates subjected to high velocity impact using a genetic algo- rithm. Int. J. Aeronaut. Space. 11(3), 227–233 (2010)CrossRefGoogle Scholar
  11. 11.
    Iannucci, L.: Progressive failure modeling of woven carbon composite under impact. Int. J. Impact Eng. 32, 1013–1043 (2006)CrossRefGoogle Scholar
  12. 12.
    Matzenmiller, A., Sackman, J.L.: On damage induced anisotropy for fiber composites. Int. J. Damage Mech. 3, 71–86 (1994)CrossRefGoogle Scholar
  13. 13.
    Paris, F.: A study of failure criteria of fibrous composite materials. NASA, CR-2001-210661 (2005)Google Scholar
  14. 14.
    Kang, K.W., Kim, J.K.: Effect of shape memory alloy on impact damage behavior and residual properties of glass/epoxy laminates under low temperature. Compos. Struct. 88, 455–460 (2009)CrossRefGoogle Scholar
  15. 15.
    Pappadà, S., Rametta, R., Toia, L., Coda, A., Fumagalli, L., Maffezzoli, A.: Embedding of superplastic SMA wires into composite structures: evaluation of impact properties. J. Mater. Eng. Perform. 18(5–6), 522–630 (2009). doi: 10.1007/s11665-009-9366-1 CrossRefGoogle Scholar
  16. 16.
    Aurrekoetxea,J., Zurbitu, J., OrtizdeMendibil, I., Agirregomezkorta, A., Sanchez-Soto, M., Sarrionandia, M.: Effect of super elastic shape memory alloy wires on the impact behavior of carbon fiber reinforced in situ polymerized poly(butylene terephthalate) composites. Mater. Lett. 65, 863–865 (2011)Google Scholar
  17. 17.
    Birman, V.: Review of mechanics of shape memory alloy structures. Appl. Mech. Rev. 50, 629–645 (1997)CrossRefGoogle Scholar
  18. 18.
    Angioni, S.L., Meo, M., Foreman, A.: Impact damage resistance and damage suppression properties of shape memory alloys in hybrid composites—a review. Smart Mater. Struct. 20, 013001 (2011)CrossRefGoogle Scholar
  19. 19.
    Pappadà, S., Rametta, R., Largo, A., Maffezzoli, A.: Low-velocity impact response in composite plates embedding shape memory alloy wires. Polym. Compos. 33(5), 655–664 (2012)CrossRefGoogle Scholar
  20. 20.
    Sofocleous, K., Ogin, S.L., Tsakiropoulos, P., Draconakis, V., Doumanidis, C.: Controlled impact testing of woven fabric composites with and without reinforcing shape-memory alloy wires. J. Compos. Mater. 48, 3799–3813 (2014)CrossRefGoogle Scholar
  21. 21.
    Khalili, S.M.R., Shiravi, M., Nooramin, A.S.: Mechanical behavior of notched plate repaired with polymer composite and smart patches - experimental study. J. Reinf. Plast. Compos. 29(19), 3021–3037 (2010). doi: 10.1177/0731684410363179 CrossRefGoogle Scholar
  22. 22.
    Auricchio, F., Taylor, R.L.: Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behaviour. Comput. Methods Appl. Mech. Eng. 143, 175–194 (1997)CrossRefGoogle Scholar
  23. 23.
    Tensile Properties of Fiber-Resin Composites, ASTM D 3039–76, American National Standard (1976)Google Scholar
  24. 24.
    Tsoi, K., et al.: Impact damage behaviour of shape memory alloy composites. Mater. Sci. Eng. 342, 207–215 (2003)CrossRefGoogle Scholar
  25. 25.
    Kin-tak, L., et al.: Low velocity impact on shape memory alloy stitched composite plates. Smart Mater. Struct. 13(364–70), (2004)Google Scholar
  26. 26.
    Rim, M.-S., et al.: Low-velocity impact characteristics of composite plates with shape memory alloy wires. J. Theor. Appl. Mech. 49(3), 841–857 (2011)Google Scholar
  27. 27.
    Tsartaris, N., Dolce, F., Polimeno, U., Meo, M., Guida, M., Marulo, F., Riccio, M.: Low velocity impact behaviour of fibre metal laminates. J. Compos. Mater. 45(7), 803–814 (2011). doi: 10.1177/0021998310376108 CrossRefGoogle Scholar
  28. 28.
    Schoeppner, G.A., Abrate, S.: Delamination threshold loads for low velocity impact on composite laminates. Compos. Part A. 31, 903–915 (2000)CrossRefGoogle Scholar
  29. 29.
    LS-DYNA Keyword User’s Manual, Vol. II Material Models. LS-DYNA R9.0 Livermore Software Technology Corp., Livermore (2015)Google Scholar
  30. 30.
    Guida,M., Marulo, F., Meo, M., Riccio, M.: Analysis of bird impact on a composite Tailplane leading edge. Appl. Compos. Mater. 15(4–6), 241–257 (2008). doi: 10.1007/s10443-008-9070-6

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of Naples “Federico II”NaplesItaly
  2. 2.Leonardo Aircraft DivisionPomigliano d’ArcoItaly

Personalised recommendations