Skip to main content
Log in

Multi-Scaled Modeling the Mechanical Properties of Tubular Composites Reinforced with Innovated 3D Weft Knitted Spacer Fabrics

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Textile composites of 3D integrated spacer configurations have been recently focused by several researchers all over the world. In the present study, newly-designed tubular composites reinforced with 3D spacer weft knitted fabrics were considered and the effects of their structural parameters on some applicable mechanical properties were investigated. For this purpose, two different samples of 3D spacer weft knitted textile types in tubular form were produced on an electronic flat knitting machine, using glass/nylon hybrid yarns. Thermoset tubular-shaped composite parts were manufactured via vacuum infusion molding process using epoxy resin. The mechanical properties of the produced knitted composites in term of external static and internal hydrostatic pressures were evaluated. Resistance of the produced composites against the external static and internal hydrostatic pressures was numerically simulated using multi-scale modeling method. The finding revealed that there is acceptable correlation between experimental and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Becerra, H.Q., Retamoso, C., Macdonald, D.D.: The corrosion of carbon steel in oil-in-water emulsions under controlled hydrodynamic conditions. Corros. Sci. 42(3), 561–575 (2000)

    Article  Google Scholar 

  2. Tu, S.T., Zhang, H., Zhou, W.W.: Corrosion failures of high temperature heat pipes. Eng. Fail. Anal. 6(6), 363–370 (1999)

    Article  Google Scholar 

  3. Avila Mendoza, J., Sykes, J.M.: The effect of low-frequency cyclic stresses on the initiation of stress corrosion cracks in X60 line pipe steel in carbonate solutions. Corros. Sci. 23(6), 547–558 (1983)

    Article  Google Scholar 

  4. Hogg, P.J.: Factors affecting the stress corrosion of GRP in acid environments. Composites. 14(3), 254–261 (1983)

    Article  Google Scholar 

  5. Frost, S.R., Cervenka, A.: Glass fibre-reinforced epoxy matrix filament-wound pipes for use in the oil industry. Compos. Manuf. 5(2), 73–81 (1994)

    Article  Google Scholar 

  6. Avci, A., Sahin, O.S., Tarakcioglu, N.: Fatigue behavior of surface cracked filament wound pipes with high tangential strength in corrosive environment. Compos. A: Appl. Sci. Manuf. 38(4), 1192–1199 (2007)

    Article  Google Scholar 

  7. Cohen, D., Mantell, S.C., Zhao, L.: The effect of fiber volume fraction on filament wound composites pressure vessel strength. Compos. Part B. 32, 413–429 (2001)

    Article  Google Scholar 

  8. Hashmi, M.S.J.: Aspects of tube and pipe manufacturing processes: meter to nanometer diameter. J. Mater. Process. Technol. 179, 5–10 (2006)

    Article  Google Scholar 

  9. Amid, H., Asgharian Jeddi, A.A., Salehi, M., Dabiryan, H.: Suitability of tubular woven fabric as the reinforcement of composite pipes. Conference Paper. (2011). doi:10.13140/2.1.4114.0007

  10. Kitching, R., Hose, D.R., Priestner, R., Hashemizadeh, S.H.: Fracture of glass-reinforced plastic pipes of mixed wall construction under pressure loading. Journal of Process Mechanical Engineering. 211, 223–246 (1997)

    Article  Google Scholar 

  11. Baranger, E., Allix, O., Blanchard, L.: A computational strategy for the analysis of damage in composite pipes. Compos. Sci. Technol. 69, 88–92 (2009)

    Article  Google Scholar 

  12. Elgalai, A.M., Hamouda, A.M.S., Mahdi, E., Sahari, B.B.: Energy absorption capabilities of woven roving glass/epoxy composite tubes: Effect of tube length. Strength, Fracture and Complexity. 3(1), 15–24 (2005)

    Google Scholar 

  13. Calme, O., Bigaud, D., Hamelin, P.: 3D braided composite rings under lateral compression. Compos. Sci. Technol. 65, 95–106 (2005)

    Article  Google Scholar 

  14. Hufenbachb, W., Blazejewsk, W., Krollb, L.: Manufacture and multiaxial test of composite tube specimens with braided glass fiber reinforcement. J. Mater. Process. Technol. 162-163, 65–70 (2005)

    Article  Google Scholar 

  15. Pamuk, P.: Development of tubular knitted fabric-reinforced composite pipes. Journal of Industrial Textiles. doi:10.1177/1528083714545393 (2014)

  16. Ramakrishna, S., Hull, D.: Energy absorption capability of epoxy composite tubes with knitted carbon fiber fabric reinforcement. Compos. Sci. Technol. 49, 349–356 (1993)

    Article  Google Scholar 

  17. Statler, R., Breay, C.: Composite tube for fluid delivery system. Patent US. 20120168012 A1. USA. (2012)

  18. Pamuk, G., Ceken, F.: Manufacturing of weft-knitted fabric reinforced composite materials: a review. Mater. Manuf. Process. 23, 635–640 (2008)

    Article  Google Scholar 

  19. Padaki, N.V., Alagirusamy, R., Sugun, B.S.: Knitted preforms for composite applications. J. Ind. Text. 35, 295–321 (2006)

    Article  Google Scholar 

  20. Ramakrishna, S.: Energy absorption characteristics of knitted fabric reinforced epoxy composite tubes. J. Reinf. Plast. Compos. 14, 1121–1141 (1995)

    Article  Google Scholar 

  21. Araújo, M., Fangueiro, R., Hong, H.: Modelling and simulation of the mechanical behavior of weft-knitted fabrics for technical applications. AUTEX Research Journal. 3, (2003)

  22. Abounaim, M., Diestel, O., Hoffmann, G., Cherif, C.: Thermoplastic composites from curvilinear 3D multi-layer spacer fabrics. J. Reinf. Plast. Compos. 29(24), 54–65 (2010)

    Article  Google Scholar 

  23. Sharma, N., Gibson, R.F., Ayorinde, E.O.: Fatigue of foam and honeycomb core composite sandwich structures: a tutorial. J. Sandw. Struct. Mater. 8, 263–319 (2006)

    Article  Google Scholar 

  24. Belouettar, S., Abbadi, A., Azari, Z., Belouettar, R., Freres, P.: Experimental investigation of static and fatigue behavior of composites honeycomb materials using four-point bending tests. Compos. Struct. 87, 265–273 (2009)

    Article  Google Scholar 

  25. Velosa, J.C., Rana, S., Fangueiro, R., Marques, S.: Predicting mechanical behavior of novel sandwich composite panels based on 3D warp-knitted spacer fabrics using Finite Element Method (FEM). In: Proceeding ECCM15, 15th European conference on composite materials. 1–7 (2012)

  26. Shiah, Y.C., Tseng, L., Hsu, J.C., Huang, H.: Experimental characterization of an integrated sandwich composite using 3D woven fabrics as the core material. J. Thermoplast. Compos. Mater. 17(3), 229–243 (2004)

    Article  Google Scholar 

  27. Hassanzadeh, S., Hasani, H., Zarrebini, M.: Thermoset composites reinforced by innovative 3D spacer weft-knitted fabrics with different cross-section profiles. Compos. Part A. 91, 65–76 (2016)

    Article  Google Scholar 

  28. Hassanzadeh, S., Hasani, H., Zarrebini, M.: Utilization of composite panels reinforced with 3D spacer weft-knitted fabrics in lightweight building construction. In: Proceeding of the Annual International Civil, Architecture and Urbanism Conference Shiraz, pp. 1–5 (2015)

  29. Hassanzadeh, S., Hasani, H., Zarrebini, M.: Effects of cross-sectional shape on mechanical performances of new-designed FRP sandwich structures reinforced with 3D weft-knitted spacer fabrics. In: Proceeding of International Conference on Research in Science and Technology Istanbul, pp. 1–9 (2016)

  30. Hamedi, S., Hasani, H., Dibajian, S.H.: Numerical simulating the flexural properties of 3D weft-knitted spacer fabric reinforced composites. J. Compos. Mater. 13(51), 1887–1899 (2017)

    Article  Google Scholar 

  31. Hill, R.: On macroscopic effects of heterogeneity in elastoplastic media at finite strain. Math. Proc. Camb. Philos. Soc. 95, 481–494 (1984)

    Article  Google Scholar 

  32. Abghary, M.J., Hasani, H., Jafari Nedoushan, R.: Numerical simulating the tensile behavior of 1×1 rib knitted fabrics using a novel geometrical model. Fibers Polym. 17, 795–800 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Hasani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omrani, E., Hasani, H. & Dibajian, S.H. Multi-Scaled Modeling the Mechanical Properties of Tubular Composites Reinforced with Innovated 3D Weft Knitted Spacer Fabrics. Appl Compos Mater 25, 145–161 (2018). https://doi.org/10.1007/s10443-017-9613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9613-9

Keywords

Navigation