Applied Composite Materials

, Volume 25, Issue 2, pp 237–254 | Cite as

Simulation of Mechanical Behavior and Damage of a Large Composite Wind Turbine Blade under Critical Loads

  • M. Tarfaoui
  • M. Nachtane
  • H. Khadimallah
  • D. Saifaoui


Issues such as energy generation/transmission and greenhouse gas emissions are the two energy problems we face today. In this context, renewable energy sources are a necessary part of the solution essentially winds power, which is one of the most profitable sources of competition with new fossil energy facilities. This paper present the simulation of mechanical behavior and damage of a 48 m composite wind turbine blade under critical wind loads. The finite element analysis was performed by using ABAQUS code to predict the most critical damage behavior and to apprehend and obtain knowledge of the complex structural behavior of wind turbine blades. The approach developed based on the nonlinear FE analysis using mean values for the material properties and the failure criteria of Tsai-Hill to predict failure modes in large structures and to identify the sensitive zones.


Composite wind turbine blade Finite element analysis Mechanical behavior 


  1. 1.
    Inger, R., Attrill, M.J., Bearhop, S., Broderick, A.C., James Grecian, W., Hodgson, D.J., Godley, B.J.: Marine renewable energy: potential benefits to biodiversity? An urgent call for research. J. Appl. Ecol. 46(6), 1145–1153 (2009)Google Scholar
  2. 2.
    Snyder, B., Kaiser, M.J.: Ecological and economic cost-benefit analysis of offshore wind energy. Renew. Energy. 34(6), 1567–1578 (2009)CrossRefGoogle Scholar
  3. 3.
    Mostafaeipour, A.: Productivity and development issues of global wind turbine industry. Renew. Sust. Energ. Rev. 14(3), 1048–1058 (2010)CrossRefGoogle Scholar
  4. 4.
    Spera, D.A. (ed.): Wind Turbine Technology. ASME Press, New York (1994)Google Scholar
  5. 5.
    Tarfaoui, M., Khadimallah, H., Imad, A., & Pradillon, J. Y. Design and finite element modal analysis of 48m composite wind turbine blade. In Applied Mechanics and Materials (Vol. 146, pp. 170–184). Trans Tech Publications (2012)Google Scholar
  6. 6.
    Shah, O.R., Tarfaoui, M.: Effect of damage progression on the heat generation and final failure of a polyester–glass fiber composite under tension–tension cyclic loading. Compos. Part B. 62, 121–125 (2014)CrossRefGoogle Scholar
  7. 7.
    Brøndsted, P., Lilholt, H., Lystrup, A.: Composite materials for wind power turbine blades. Annu. Rev. Mater. Res. 35, 505–538 (2005)CrossRefGoogle Scholar
  8. 8.
    Nachtane, M., Tarfaoui, M., El Moumen, A., Saifaoui, D.: Damage prediction of horizontal axis marine current turbines under hydrodynamic, hydrostatic and impacts loads. Compos. Struct. 170, 146 (2017)CrossRefGoogle Scholar
  9. 9.
    Aymerich, F. Composite materials for wind turbine blades.Google Scholar
  10. 10.
    Chou, J.S., Chiu, C.K., Huang, I.K., Chi, K.N.: Failure analysis of wind turbine blade under critical wind loads. Eng. Fail. Anal. 27, 99–118 (2013)CrossRefGoogle Scholar
  11. 11.
    Shokrieh, M.M., Rafiee, R.: Simulation of fatigue failure in a full composite wind turbine blade. Compos. Struct. 74(3), 332–342 (2006)CrossRefGoogle Scholar
  12. 12.
    Marin, J.C., Barroso, A., Paris, F., Canas, J.: Study of fatigue damage in wind turbine blades. Eng. Fail. Anal. 16(2), 656–668 (2009)CrossRefGoogle Scholar
  13. 13.
    Bansal, R.C., Bhatti, T.S., Kothari, D.P.: On some of the design aspects of wind energy conversion systems. Energy Convers. Manag. 43(16), 2175–2187 (2002)CrossRefGoogle Scholar
  14. 14.
    Tarfaoui, M., Shah, O.R.: Spar shape optimization of a multi-megawatt composite wind turbine blade. Modal Analysis, Recent Advances in Composite Materials for Wind Turbines Blades. 93–104 (2013)Google Scholar
  15. 15.
    Tarfaoui, M., Khadimallah, H., Shah, O., & Pradillon, J. Y. Effect of spars cross-section design on dynamic behavior of composite wind turbine blade: modal analysis. In Power Engineering, Energy and Electrical Drives (POWERENG), 2013 Fourth International Conference on pp. 1006–1011. IEEE (2013, May)Google Scholar
  16. 16.
    Shah, O.R., Tarfaoui, M.: The identification of structurally sensitive zones subject to failure in a wind turbine blade using nodal displacement based finite element sub-modeling. Renew. Energy. 87, 168–181 (2016)CrossRefGoogle Scholar
  17. 17.
    Tarfaoui, M., & Akesbi, S. Application of the finite element method to the theoretical study of the mechanical behaviour of plain fabrics. In International conference on engineering computational technology pp. 83–88. (2000)Google Scholar
  18. 18.
    Tarfaoui, M., Pradillon, J.Y., Shah, O.R.: Numerical investigation of a large composite wind turbine with different spar profiles using finite-element method. La Houille Blanche. 5, 29–35 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • M. Tarfaoui
    • 1
  • M. Nachtane
    • 1
    • 2
  • H. Khadimallah
    • 1
  • D. Saifaoui
    • 2
  1. 1.Department of Fluid Dynamics, Materials and StructuresENSTA Bretagne – IRDL/LBMSBrestFrance
  2. 2.Laboratory for Renewable Energy and Dynamic SystemsFSAC - UH2CCasablancaMorocco

Personalised recommendations