Skip to main content
Log in

Improvement of Progressive Damage Model to Predicting Crashworthy Composite Corrugated Plate

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

To predict the crashworthy composite corrugated plate, different single and stacked shell models are evaluated and compared, and a stacked shell progressive damage model combined with continuum damage mechanics is proposed and investigated. To simulate and predict the failure behavior, both of the intra- and inter- laminar failure behavior are considered. The tiebreak contact method, 1D spot weld element and cohesive element are adopted in stacked shell model, and a surface-based cohesive behavior is used to capture delamination in the proposed model. The impact load and failure behavior of purposed and conventional progressive damage models are demonstrated. Results show that the single shell could simulate the impact load curve without the delamination simulation ability. The general stacked shell model could simulate the interlaminar failure behavior. The improved stacked shell model with continuum damage mechanics and cohesive element not only agree well with the impact load, but also capture the fiber, matrix debonding, and interlaminar failure of composite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Liu, X.C., Guo, J., Bai, C.Y., Sun, X.S., Mou, R.K.: Drop test and crash simulation of a civil airplane fuselage section. Chin. J. Aeronaut. 28(2), 447–456 (2015)

    Article  Google Scholar 

  2. Tay, Y.Y., Bhonge, P.S., Lankarani, H.M.: Crash simulations of aircraft fuselage section in water impact and comparison with solid surface. Int. J. Crashworthiness. 20(5), 464–482 (2015)

    Article  Google Scholar 

  3. Ren, Y.R., Xiang, J.W.: A comparative study of the crashworthiness of civil aircraft with different strut configurations. Int. J. Crashworthiness. 15(3), 321–330 (2010)

    Article  Google Scholar 

  4. Li, D.C., Wu, Y.N., Ronch, A.D., Xiang, J.W.: Energy harvesting by means of flow-induced vibrations on aerospace vehicles. Prog. Aerosp. Sci. 86, 28–62 (2016)

    Article  Google Scholar 

  5. Guo, S.J., Li, D.C., Zhang, X., Xiang, J.W.: Buckling and post-buckling of a composite C-section with cutout and flange reinforcement. Compos. Part B. 60(3), 119–124 (2014)

    Article  Google Scholar 

  6. El Kadi, H.: Predicting the crushing behavior of axially loaded elliptical composite tubes using artificial neural networks. Appl. Compos. Mater. 15, 273–285 (2008)

    Article  Google Scholar 

  7. Zangani, D., Robinson, M., Gibson, A.G.: Energy absorption characteristics of web-Core sandwich composite panels subjected to drop-weight impact. Appl. Compos. Mater. 15, 139–156 (2008)

    Article  Google Scholar 

  8. Kumar, D., Roy, R., Kweon, J.-H., Choi, J.-h.: Numerical modeling of combined matrix cracking and delamination in composite laminates using cohesive elements. Appl. Compos. Mater. 108, 570–580 (2016)

    Google Scholar 

  9. McConnell, J.R., Hong, S.: Design of cellular composite sandwich panels for maximum blast resistance via energy absorption. Appl. Compos. Mater. 23, 375–396 (2016)

    Article  Google Scholar 

  10. David, M., Johnson, A.F., Voggenreiter, H.: Analysis of crushing response of composite crashworthy structures. Appl. Compos. Mater. 20, 773–787 (2013)

    Article  Google Scholar 

  11. Jager, S., Pickett, A., Middendorf, P.: A discrete model for simulation of composites plate impact including coupled intra- and inter-ply failure. Appl. Compos. Mater. 23, 179–195 (2016)

    Article  Google Scholar 

  12. Yang, L., Li, Z., Sun, T., Wu, Z.: Effects of gear-shape Fibre on the transverse mechanical properties of unidirectional composites: virtual material design by computational micromechanics. Appl. Compos. Mater., (2017). doi:10.1007/s10443-016-9580-6

  13. Han, G., Guan, Z., Li, Z., Shanyi, D.: Microscopic progressive damage simulation and scale-span analysis of cross-ply laminate based on the elastic–plastic theory. Appl. Compos. Mater. 22, 1–12 (2015)

    Article  Google Scholar 

  14. Ji, Z., Guan, Z., Li, Z.: A Progressive damage model for predicting permanent indentation and impact damage in composite laminates. Appl. Compos. Mater., (2016). doi:10.1007/s10443-016-9572-6

  15. Shi, Q.H., Dai, D., Cao, Z.H.: Tensile failure strength analysis and experimental confirmation of stitch reinforced composite of T-stiffened structure. Polym. Polym. Compos. 20(3), 307–311 (2012)

    Google Scholar 

  16. Pearce, G.M.K., Johnson, A.F., Hellier, A.K.: A stacked-Shell finite element approach for modelling a dynamically loaded composite bolted joint under in-plane bearing loads. Appl. Compos. Mater. 20, 1025–1039 (2013)

    Article  Google Scholar 

  17. Liu, P.F., Yang, Y.H., Gu, Z.P., Zheng, J.Y.: Finite element analysis of progressive failure and strain localization of carbon fiber/epoxy composite laminates by ABAQUS. Appl. Compos. Mater. 22, 711–731 (2015)

    Article  Google Scholar 

  18. Malusare, K.A., Fertig, R.S.: Composite interaction energy and constituent average stresses for predicting composite failure. AIAA J. 52(11), 2455–2461 (2014)

    Article  Google Scholar 

  19. Wiggenraad, J.F.M., Michielsen, A.P.J., Santoro, D., Le, P.F., Kindervater, C.M., Beltran, F.: Development of a crashworthy composite fuselage structure for a commuter aircraft. Nationall Lucht-en Ruimtevaart laboratorium (NLR), NLR-TP -99532, (1999)

  20. Vicecte, J.L.S., Beltran, F., Martinez, F.: Simulation of Impact on Composite Fuselage Structures, pp. 1–10. European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona (2000)

    Google Scholar 

  21. Ren, Y.R., Xiang, J.W., Zheng, J.Q., Luo, Z.P.: Crashworthiness analysis of aircraft fuselage with sine-wave beam structure. Chin. J. Aeronaut. 29(2), 403–410 (2016)

    Article  Google Scholar 

  22. Feraboli, P.: Development of a corrugated test specimen for composite materials energy absorption. J. Compos. Mater. 42(3), 229–256 (2008)

    Article  Google Scholar 

  23. Grauers, L., Olsson, R., Gutkin, R.: Energy absorption and damage mechanisms in progressive crushing of corrugated NCF laminates: Fractographic analysis. Compos. Struct. 110, 110–117 (2014)

    Article  Google Scholar 

  24. Duan, S.Y., et al.: Investigation on structure optimization of optimization of crashworthiness of fiber reinforced polymers material[J]. Compos. Part B. 60, 471–478 (2014)

    Article  Google Scholar 

  25. Feraboli, P., Wade, B., Deleo, F., Rassaian, M., Higgins, M., Byar, A.: LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen. Compos. Part A. 42, 1809–1825 (2011)

    Article  Google Scholar 

  26. Sokolinsky, V.S., Indermuehle, K.C., Hurtado, J.A.: Numerical simulation of the crushing process of a composite corrugated plate. Compos. Part A. 42, 1119–1126 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research is co-supported by the National Natural Science Foundation of China (No. 11402011) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiru Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Jiang, H., Ji, W. et al. Improvement of Progressive Damage Model to Predicting Crashworthy Composite Corrugated Plate. Appl Compos Mater 25, 45–66 (2018). https://doi.org/10.1007/s10443-017-9610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9610-z

Keywords

Navigation