Skip to main content
Log in

Simulation of Low Velocity Impact Induced Inter- and Intra-Laminar Damage of Composite Beams Based on XFEM

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, the Inter-Fiber Fracture (IFF) criterion of Puck failure theory based on the eXtended Finite Element Method (XFEM) was implemented in ABAQUS code to predict the intra-laminar crack initiation of unidirectional (UD) composite laminate. The transverse crack path in the matrix can be simulated accurately by the presented method. After the crack initiation, the propagation of the crack is simulated by Cohesive Zoom Model (CZM), in which the displacement discontinuities and stress concentration caused by matrix crack is introduced into the finite element (FE) model. Combined with the usage of the enriched element interface, which can be used to simulate the inter-laminar delamination crack, the Low Velocity Impact (LVI) induced damage of UD composite laminate beam with a typical stacking of composite laminates [05/903]S is studied. A complete crack initiation and propagation process was simulated and the numerical results obtained by the XFEM are consistent with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Rechak, S., Sun, C.T.: Optimal Use of Adhesive Layers in Reducing Impact Damage in Composite Laminates, pp. 18–31. Springer, Dordrecht (1987)

  2. Zhang, J., Zhang, X.: Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact. Compos. Struct. 125, 51–57 (2015)

    Article  Google Scholar 

  3. Gigliotti, L., Pinho, S.T.: Multiple length/time-scale simulation of localized damage in composite structures using a mesh superposition technique. Compos. Struct. 121, 395–405 (2015)

    Article  Google Scholar 

  4. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47(2), 329–334 (1980)

    Article  Google Scholar 

  5. Zinoviev, P.A., Lebedeva, O.V., Tairova, L.P.: A coupled analysis of experimental and theoretical results on the deformation and failure of composite laminates under a state of plane stress. Compos. Sci. Technol. 62(12–13), 1711–1723 (2002)

    Article  Google Scholar 

  6. Bogetti, T.A., Hoppel, C.P.R., Harik, V.M., Newill, J.F., Burns, B.P.: Predicting the nonlinear response and progressive failure of composite laminates. Compos. Sci. Technol. 64(3–4), 329–342 (2004)

    Article  Google Scholar 

  7. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62(7), 1633–1662 (2002)

    Article  Google Scholar 

  8. Cuntze, R.G., Freund, A.: The predictive capability of failure mode concept-based strength criteria for multidirectional laminates. Compos. Sci. Technol. 64(3–4), 343–377 (2004)

    Article  Google Scholar 

  9. Liu, K.-S., Tsai, S.W.: A progressive quadratic failure criterion for a laminate. Compos. Sci. Technol. 58(7), 1023–1032 (1998)

    Article  Google Scholar 

  10. He, W., Guan, Z., Li, X., Liu, D.: Prediction of permanent indentation due to impact on laminated composites based on an elasto-plastic model incorporating fiber failure. Compos. Struct. 96, 232–242 (2013)

    Article  Google Scholar 

  11. Wiegand, J., Petrinic, N., Elliott, B.: An algorithm for determination of the fracture angle for the three-dimensional Puck Matrix failure criterion for UD composites. Compos. Sci. Technol. 68(12), 2511–2517 (2008)

    Article  Google Scholar 

  12. Schirmaier, F.J., Weiland, J., Kärger, L., Henning, F.: A new efficient and reliable algorithm to determine the fracture angle for Puck’s 3D matrix failure criterion for UD composites. Compos. Sci. Technol. 100, 19–25 (2014)

    Article  Google Scholar 

  13. Shi, Y., Swait, T., Soutis, C.: Modelling damage evolution in composite laminates subjected to low velocity impact. Compos. Struct. 94(9), 2902–2913 (2012)

    Article  Google Scholar 

  14. Tan, W., Falzon, B.G., Chiu, L.N.S., Price, M.: Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates. Compos Part A-Appl Sci Manuf. 71, 212–226 (2015)

    Article  Google Scholar 

  15. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Intl J Numer Meth Eng. 45(5), 601–620 (1999)

    Article  Google Scholar 

  16. Moes, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69(7), 813–833 (2002)

    Article  Google Scholar 

  17. Alberti, M.G., Enfedaque, A., Gálvez, J.C., Reyes, E.: Numerical modelling of the fracture of polyolefin fibre reinforced concrete by using a cohesive fracture approach. Compos Part B-Eng. 111, 200–210 (2017)

    Article  Google Scholar 

  18. Hu, X.F., Chen, B.Y., Tirvaudey, M., Tan, V.B.C., Tay, T.E.: Integrated XFEM-CE analysis of delamination migration in multi-directional composite laminates. Compos Part A-Appl Sci Manuf. 90, 161–173 (2016)

    Article  Google Scholar 

  19. Vigueras, G., Sket, F., Samaniego, C., Wu, L., Noels, L., Tjahjanto, D., et al.: An XFEM/CZM implementation for massively parallel simulations of composites fracture. Compos. Struct. 125, 542–557 (2015)

    Article  Google Scholar 

  20. Zhao, L., Zhi, J., Zhang, J., Liu, Z., Hu, N.: XFEM simulation of delamination in composite laminates. Compos Part A-Appl Sci Manuf. 80, 61–71 (2016)

    Article  Google Scholar 

  21. Curiel Sosa, J.L., Karapurath, N.: Delamination modelling of GLARE using the extended finite element method. Compos. Sci. Technol. 72(7), 788–791 (2012)

    Article  Google Scholar 

  22. Puck, A., Schürmann, H.: Failure analysis of FRP laminatrs by means of physically based phenomenological models. Compos. Sci. Technol. 58(7), 1045–1067 (1998)

  23. Zhao, L., Gong, Y., Zhang, J., Chen, Y., Fei, B.: Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements. Compos. Struct. 116, 509–522 (2014)

    Article  Google Scholar 

  24. Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56(4), 439–449 (1996)

    Article  Google Scholar 

  25. ABAQUS. ABAQUS 6.13 Documentation. Dassault systems

  26. Soden, P.D., Hinton, M.J., Kaddour, A.S.: Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates: failure exercise benchmark data. Compos. Sci. Technol. 62(12–13), 1489–1514 (2002)

    Article  Google Scholar 

  27. Aragone’s, D.: Fracture micromechanisms in C/epoxy composites under transverse compression. Master thesis, Universidad Polite ´cnica de Madrid (2007)

  28. Topac, O.T., Gozluklu, B., Gurses, E., Coker, D.: Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact. Compos Part A-Appl Sci Manuf. 92, 167–182 (2017)

    Article  Google Scholar 

  29. Shi, Y., Soutis, C.: Modelling transverse matrix cracking and splitting of cross-ply composite laminates under four point bending. Theor. Appl. Fract. Mech. 83, 73–81 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Guan, Z. & Li, Z. Simulation of Low Velocity Impact Induced Inter- and Intra-Laminar Damage of Composite Beams Based on XFEM. Appl Compos Mater 24, 1459–1477 (2017). https://doi.org/10.1007/s10443-017-9598-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9598-4

Keywords

Navigation