Skip to main content

A Multi Material Shell Model for the Mechanical Analysis of Triaxial Braided Composites

A Correction to this article was published on 20 November 2018

This article has been updated

Abstract

An efficient numerical methodology based on a multi material shell (MMS) approximation is proposed in this paper for the analysis of the mechanical behavior of triaxial braided composites subjected to tensile loads. The model is based on a geometrical description of the textile architecture of the material at the Gauss point level of a standard shell including the corresponding yarn geometrical parameters. The mechanical properties at the yarn level were determined from values reported in the literature or by means of micromechanical homogenization of unidirectional fiber reinforced composites. Simulations were carried out on single representative unit cell subjected to periodic boundary conditions and on multiple cell representative volume elements corresponding to the size of the standard width of a tensile specimen. The numerical results were compared with the stress-strain curves obtained experimentally as well as the damage mechanisms progression during deformation captured using radiographs performed on interrupted tests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Change history

  • 20 November 2018

    The original version of this article unfortunately requires correction with respect to the affiliation of some of the co-authors.

References

  1. Dassault Systèmes: Abaqus 6.13 Documentation (2013)

  2. A&P Technology: Q-ISO Braided Triaxial Fabric. http://www.braider.com/Products/QISO-Braided-Triaxial-Fabric.aspx (2016)

  3. Ayranci, C., Carey, J.: 2D braided composites: A review for stiffness critical applications. Compos. Struct. 85(1), 43–58 (2008). doi:10.1016/j.compstruct.2007.10.004. http://linkinghub.elsevier.com/retrieve/pii/S0263822307002395

    Article  Google Scholar 

  4. Barbero, E.J.: Finite Element Analysis of Composite Materials (2008)

  5. Byun, J.H.: The analytical characterization of 2-D braided textile composites. Compos. Sci. Technol. 60 (5), 705–716 (2000). doi:10.1016/S0266-3538(99)00173-6. http://linkinghub.elsevier.com/retrieve/pii/S0266353899001736

    Article  Google Scholar 

  6. Catalanotti, G., Xavier, J.: Measurement of the mode II intralaminar fracture toughness and R-curve of polymer composites using a modified Iosipescu specimen and the size effect law. Eng. Fract. Mech. 138(June 2016), 202–214 (2015). doi:10.1016/j.engfracmech.2015.03.005

    Article  Google Scholar 

  7. Cater, C.R., Xiao, X., Goldberg, R.K., Kohlman, L.W.: Single ply and multi-ply braided composite response predictions using modified subcell approach. J. Aerosp. Eng. 28(5), 04014,117 (2015). doi:10.1061/(ASCE)AS.1943-5525.0000445

    Article  Google Scholar 

  8. Chamis, C.: Mechanics of composite materials: past, present and future. J. Compos. Technol. Res. 11(1), 3–14

  9. Cheng, J., Binienda, W.K.: Simplified braiding through integration points model for triaxially braided composites. J. Aerosp. Eng. 21(3), 152–161 (2008). doi:10.1061/(ASCE)0893-1321(2008)21:3(152).

  10. Falzon, P., Herszbergb, I.: Mechanical performance of 2-D braided carbon / epoxy composites *. Compos. Sci. Technol. 3538(97), 253–265 (1998)

    Article  Google Scholar 

  11. Gerlach, R., Siviour, C.R., Petrinic, N., Wiegand, J.: Experimental characterisation and constitutive modelling of RTM-6 resin under impact loading. Polymer 49(11), 2728–2737 (2008). doi:10.1016/j.polymer.2008.04.018

    CAS  Article  Google Scholar 

  12. González, C., LLorca, J.: Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling. Compos. Sci. Technol. 67(13), 2795–2806 (2007). doi:10.1016/j.compscitech.2007.02.001

    CAS  Article  Google Scholar 

  13. Goyal, D., Whitcomb, J.D., Tang, X.: Validation of full 3D and equivalent tape laminate modeling of plasticity induced non-linearity in 2 × 2 braided composites. Compos. A: Appl. Sci. Manuf. 39(5), 747–760 (2008). doi:10.1016/j.compositesa.2008.02.007

    CAS  Article  Google Scholar 

  14. Hallal, A., Younes, R., Fardoun, F.: Review and comparative study of analytical modeling for the elastic properties of textile composites. Compos. Part B 50, 22–31 (2013). doi:doi:10.1016/j.compositesb.2013.01.024 10.1016/j.compositesb.2013.01.024

    Article  Google Scholar 

  15. Herráez, M., González, C., Lopes, C.S., Guzmán de Villoria, R., Llorca, J., Varela, T., Sánchez, J.: Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of unidirectional composites: an approach to virtual materials design. Compos. Part A: Appl. Sci. Manuf. (2016). doi:10.1016/j.compositesa.2016.02.026

    Article  Google Scholar 

  16. Herráez, M., Mora, D., Naya, F., Lopes, C.S., González, C., Llorca, J.: Transverse cracking of cross-ply laminates: A computational micromechanics perspective 110, 196–204 (2015). doi:10.1016/j.compscitech.2015.02.008 10.1016/j.compscitech.2015.02.008

  17. Hexcel: Datasheet HexFlow RTM6. Tech. rep. (2016)

  18. Hexcel: Datasheet HexTow AS4C. Tech. rep. (2016)

  19. Ivanov, D.S., Baudry, F., Van Den Broucke, B., Lomov, S.V., Xie, H., Verpoest, I.: Failure analysis of triaxial braided composite. Compos. Sci. Technol. 69 (9), 1372–1380 (2009). doi:doi:10.1016/j.compscitech.2008.09.013 10.1016/j.compscitech.2008.09.013. http://www.sciencedirect.com/science/article/pii/S0266353808003308

  20. Kohlman, L.W.: Evaluation of test methods for triaxial braid composites and the development of a large multiaxial test frame for validation using braided tube specimens. Ph.D. thesis. Thesis submitted to The University of Akron (2012)

  21. Littell, J.: The experimental and analytical characterization of the. Ph.D thesis (2008)

  22. Littell, J.D.: Experimental and analytical characterization of the macromechanical response for triaxial braided composite materials NASA/CR—2013-215450 (December) (2013)

  23. Littell, J.D., Binienda, W.K., Arnold, W.A., Roberts, G.D., Goldberg, R.K.: Effect of microscopic damage events on static and ballistic impact strength of triaxial braid composites. Compos. A: Appl. Sci. Manuf. 40(12), 1846–1862 (2009). doi:10.1016/j.compositesa.2009.08.001

    CAS  Article  Google Scholar 

  24. Llorca, J., González, C., Molina-Aldareguía, J.M., Segurado, J., Seltzer, R., Sket, F., Rodríguez, M., Sádaba, S., Muñoz, R., Canal, L.P.: Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv. Mater. (Deerfield Beach, Fla.) 23(44), 5130–47 (2011). doi:10.1002/adma.201101683. http://www.ncbi.nlm.nih.gov/pubmed/21971955

    CAS  Article  Google Scholar 

  25. Lomov, S.V., Ivanov, D.S., Truong, T.C., Verpoest, I., Baudry, F., Vanden Bosche, K., Xie, H.: Experimental methodology of study of damage initiation and development in textile composites in uniaxial tensile test. Compos. Sci. Technol. 68(12), 2340–2349 (2008). doi:10.1016/j.compscitech.2007.07.005

    CAS  Article  Google Scholar 

  26. Lomov, S.V., Ivanov, D.S., Verpoest, I., Zako, M., Kurashiki, T., Nakai, H., Hirosawa, S.: Meso-FE modelling of textile composites: Road map, data flow and algorithms. Compos. Sci. Technol. 67(9), 1870–1891 (2007). doi:10.1016/j.compscitech.2006.10.017

    Article  Google Scholar 

  27. Lopes, C., Camanho, P., Gürdal, Z., Tatting, B.: Progressive failure analysis of tow-placed, variable-stiffness composite panels. Int. J. Solids Struct. 44(25), 8493–8516 (2007). doi:doi:10.1016/j.ijsolstr.2007.06.029 10.1016/j.ijsolstr.2007.06.029

    Article  Google Scholar 

  28. Naik, R., Ifju, P., Masters, J.E.: Effect of fibre architecture parameters on defromation fields and elastic moduli of 2-D braided composites, vol. 28 (1994)

  29. Naik, R.A.: Failure analysis of woven and braided fabric reinforced composites. J. Compos. Mater. 29 (17), 2334–2363 (1995). doi:10.1177/002199839502901706

    Article  Google Scholar 

  30. Naya, F., González, C., Lopes, C., Van der Veen, S., Pons, F.: Computational micromechanics of the transverse and shear behavior of unidirectional fiber reinforced polymers including environmental effects. Compos. A: Appl. Sci. Manuf. 92, 146–157 (2017). doi:10.1016/j.compositesa.2016.06.018

    CAS  Article  Google Scholar 

  31. Pablo, L., González, C., Segurado, J., Llorca, J.: Intraply fracture of fiber-reinforced composites: Microscopic mechanisms and modeling. Compos. Sci. Technol. 72(11), 1223–1232 (2012). doi:10.1016/j.compscitech.2012.04.008

    CAS  Article  Google Scholar 

  32. Quek, S.C., Waas, A.M., Shahwan, K.W., Agaram, V.: Analysis of 2D triaxial flat braided textile composites. Int. J. Mech. Sci. 45(6-7), 1077–1096 (2003). doi:10.1016/j.ijmecsci.2003.09.003. http://www.sciencedirect.com/science/article/pii/S0020740303001632

    Article  Google Scholar 

  33. Roberts, G.D., Goldberg, R.K., Binienda, W.K., Arnold, W.A., Littell, J., Kohlman, L.W.: Characterization of triaxial braided composite material properties for impact simulation. NASA Technical Report (September), 41 (2009)

  34. Sherburn, M.: Geometric and mechanical modelling of textiles. Ph.D. thesis. Thesis submited to The University of Nottingham (2007)

  35. Sket, F., Enfedaque, A., Alton, C., González, C., Molina-Aldareguia, J., Llorca, J.: Automatic quantification of matrix cracking and fiber rotation by X-ray computed tomography in shear-deformed carbon fiber-reinforced laminates. Compos. Sci. Technol. 90, 129–138 (2014). doi:doi:10.1016/j.compscitech.2013.10.022

    CAS  Article  Google Scholar 

  36. Totry, E., Molina-Aldareguía, J.M., González, C., LLorca, J.: Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites. Compos. Sci. Technol. 70(6), 970–980 (2010). doi:10.1016/j.compscitech.2010.02.014. http://linkinghub.elsevier.com/retrieve/pii/S0266353810000734

    CAS  Article  Google Scholar 

  37. Verpoest, I., Lomov, S.V.: Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis. Compos. Sci. Technol. 65 (15), 2563–2574 (2005). doi:10.1016/j.compscitech.2005.05.031

    CAS  Article  Google Scholar 

  38. Xiao, X., Kia, H.G., Gong, X.J.: Strength prediction of a triaxially braided composite. Compos. A: Appl. Sci. Manuf. 42(8), 1000–1006 (2011). doi:10.1016/j.compositesa.2011.04.003

    CAS  Article  Google Scholar 

  39. Zebdi, O., Boukhili, R., Trochu, F.: An inverse approach based on laminate theory to calculate the mechanical properties of braided composites. J. Reinf. Plast. Compos. 28(23), 2911–2930 (2009). doi:10.1177/0731684408094063

    CAS  Article  Google Scholar 

  40. Zhang, C., Binienda, W.K., Goldberg, R.K., Kohlman, L.W.: A Meso-scale failure modeling of single layer triaxial braided composite using finite element method. Compos. Part A 58, 36–46 (2014). doi:10.1016/j.compositesa.2013.11.009

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This investigation was supported by the Ministerio de Ciencia e Innovación of Spain through the grant MAT2012-37552, by the Comunidad de Madrid through the program DIMMAT (P2013/MIT-2775). In addition, the support of Airbus through the projects SIMET “Numerical simulations for metallic fragments impact on composites” and BLADE IMPACT “Shielding Design for Engine Blade Release and Impact on Aircraft Fuselage” is gratefully acknowledged. The help of Mr. Wilko Roelse, Mr. Jeroen Knippenberg and Mr. Bas van den Beuken is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. González.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Carpintero, A., Herráez, M., Xu, J. et al. A Multi Material Shell Model for the Mechanical Analysis of Triaxial Braided Composites. Appl Compos Mater 24, 1425–1445 (2017). https://doi.org/10.1007/s10443-017-9593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9593-9

Keywords

  • Computational modelling
  • Finite element analysis (FEA)
  • Damage mechanics
  • Strength