Skip to main content
Log in

A Mathematical Model for Continuous Fiber Reinforced Thermoplastic Composite in Melt Impregnation

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Through the combination of Reynolds equation and Darcy’s law, a mathematical model was established to calculate the pressure distribution in wedge area, which contributed to the forecast effect of processing parameters on impregnation degree of the fiber bundle. The experiments were conducted to verify the capacity of the proposed model with satisfactory results, which means that the model is effective in predicting the influence of processing parameters on impregnation. From the mathematical model, it was known that the impregnation degree of the fiber bundle would be improved by increasing the processing temperature, number and radius of pins, or decreasing the pulling speed and the center distance of pins, which provided a possible solution to the difficulty of melt with high viscosity in melt impregnation and optimization of impregnation processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fang X., Shen C., Dai G.: Mechanical properties of unidirectional continuous fiber tapes reinforced long fiber thermoplastics and their manufacturing. J. Reinf. Plast. Compos. 35(5), 408–420 (2016)

    Article  Google Scholar 

  2. Gabrion X., Placet V., Trivaudey F., Boubakar L.: About the thermomechanical behavior of a carbon fibre reinforced high-temperature thermoplastic composite. Compos. Part B-Eng. 95, 386–394 (2016)

    Article  Google Scholar 

  3. Bohm R., Hufnagl E., Kupfer R., Engler T., Hausding J., Cherif C., Hufenbach W.: Thermoplastic composites reinforced with textile grids: development of a manufacturing chain and experimental characterization. Appl. Compos. Mater. 20(6), 1077–1096 (2013)

    Article  Google Scholar 

  4. Karaduman Y., Onal L., Rawal A.: Effect of stacking sequence on mechanical properties of hybrid flax/jute fibers reinforced thermoplastic composites. Polym. Compos. 36(12), 2167–2173 (2015)

    Article  Google Scholar 

  5. Risicato J., Kelly F., Soulat D., Legrand X., Trumper W., Cochrane C., Koncar V.: A complex shaped reinforced thermoplastic composite part made of commingled yarns with integrated sensor. Appl. Compos. Mater. 22(1), 81–98 (2015)

    Article  Google Scholar 

  6. Hasselbruch H., Von Hehl A., Zoch H.W.: Properties and failure behavior of hybrid wire mesh/carbon fiber reinforced thermoplastic composites under quasi-static tensile load. Mater. Design. 66, 429–436 (2015)

    Article  Google Scholar 

  7. Vaidya U.K., Chawla K.K.: Processing of fibre reinforced thermoplastic composites. Int. Mater. Rev. 53(4), 185–218 (2008)

    Article  Google Scholar 

  8. Steggall-Murphy C., Simacke P., Advani S.G., Yarlagdda S., Walsh S.: A model for thermoplastic melt impregnation of fiber bundles during consolidation of powder-impregnated continuous fiber composites. Compos. Part A-Appl. S. 41(1), 93–100 (2010)

    Article  Google Scholar 

  9. Xian G., Pu H.T., Yi X.S., Pan Y.: Parametric optimization of pin-assisted-melt impregnation of glass fiber/polypropylene by taguchi method. J. Compos. Mater. 40(23), 2087–2097 (2006)

    Article  Google Scholar 

  10. Kim J.W., Lee J.S.: The effect of the melt viscosity and impregnation of a film on the mechanical properties of thermoplastic composites. Materials. 9(6), 448 (2016)

    Article  Google Scholar 

  11. Carlone P., Palazzo G.S.: Unsaturated and saturated flow front tracking in liquid composite molding processes using dielectric sensors. Appl. Compos. Mater. 22(5), 543–557 (2015)

    Article  Google Scholar 

  12. Vlug M.A.: Shell Research Limited: Process of melt impregnation. US, 5798068. (1998)

  13. Xian G., Pu H.T., Yi X.S., Pan Y.: Parametric optimization of pin-assisted-melt impregnation of glass fiber/propylene by taguchi method. J. Compos. Mater. 40(23), 2087–2097 (2006)

    Article  Google Scholar 

  14. Stavrov V.P., Starvrov V.V., Pankova N.V., Friedrich K.: Variation of the structure and permeability of tensioned fiber layers during impregnation with a thermoplastic polymer melt. Mech. Compos. Mater. 36(2), 155–162 (2000)

    Article  Google Scholar 

  15. Bates P.J., Kendall J., Taylor D., Cunningham M.: Pressure build-up during melt impregnation. Compos. Sci. Technol. 62(3), 379–384 (2002)

    Article  Google Scholar 

  16. Chandler H.W., Devlin B.J., Gibson A.G.: A model for the continuous impregnation of fiber tows in resin baths with pins. Plast. Rub. Compos. Pro. 18(4), 215–220 (1992)

    Google Scholar 

  17. Seo J.W., Lee W.I.: A model of the resin impregnation in thermoplastic composites. J. Compos. Mater. 25(9), 1127–1142 (1991)

    Google Scholar 

  18. Koubaa S., Burtin C., Poitou A., Lecorre S.: Simple modelling of impregnation in pultrusion process of thermoplastic composites. Int. J. Microstruct. Mater. Prop. 7(5), 428–438 (2012)

    Google Scholar 

  19. Peltonen P., Lahteenkorva K., Paakkonen E.J., Jarvela P.K., Tormala P.: The influence of melt impregnation parameters on the degree of impregnation of a polypropylene/glass fibre prepreg. J. Thermoplast. Compos. 5(4), 318–343 (1992)

    Article  Google Scholar 

  20. Bates P.J., Zou X.P.: Polymer melt impregnation of glass roving: modeling and experimental. Int. Polym. Process. 17(4), 376–386 (2002)

    Article  Google Scholar 

  21. Bates P.J., Charrier J.M.: Pulling tension monitoring during the melt impregnation of glass roving. Polym. Compos. 21(1), 104–113 (2000)

    Article  Google Scholar 

  22. Polychronopoulos N.D., Papathanasiou T.D.: Pin-assisted resin infiltration of porous substrates. Compos. Part A-Appl. S. 71, 126–135 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51273019) and our industry partner Nanjing Chuangbo Machinery Co. Ltd. The authors would also like to appreciate for the assistances from Prof. Qingchun Li and Mr. Jufa Guo in the experimental testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Yu or Yadong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, F., Yu, Y., Yang, J. et al. A Mathematical Model for Continuous Fiber Reinforced Thermoplastic Composite in Melt Impregnation. Appl Compos Mater 24, 675–690 (2017). https://doi.org/10.1007/s10443-016-9534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9534-z

Keywords

Navigation