Skip to main content
Log in

Thermoelasticity of a Fabric Membrane Composite for the Stratospheric Airship Envelope Based on Multiscale Models

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

As a main structure of the stratosphere airship, the typical envelope material is flexible fabric membrane composite. The high-low alternated temperature of the stratosphere has a great influence on the mechanical property of the envelope material. Thermoelasticity of the envelope material is first investigated based on a micromechanical model. The modulus and coefficient of thermal expansion of the material are simulated respectively and compared with the measured results. It can be concluded that the material owns the similar nonlinearity character both in warp and weft directions and the modulus in both directions increase to a steady-state value gradually from a relatively small value. The coefficients of thermal expansion of the material in two directions in the plane are quite small compared with the out-plane direction because of the constraint effect between yarns and matrix. The thermal distribution and the deformation of the envelope material in different temperatures are carried out at last. It is expected that the results are significative for the engineering design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yousef, M.I., Stylios, G.K.: Legacy of the Zeppelins: defining fabrics as engineering materials. J. Text. Inst. 106(5), 480–489 (2014). doi:10.1080/00405000.2014.926606

    Article  Google Scholar 

  2. Ambroziak, A.: Analysis of non-linear elastic material properties of PVC-coated Panama fabric. Task Q. 9(2), 167–178 (2005)

    Google Scholar 

  3. Argyris, J., Doltsinis, I.S.: Constitutive modelling and computation of non-linear viscoelastic solids. Part I: Rheological models and numerical integration techniques. Comput. Methods Appl. Mech. Eng. 88(2), 135–163 (1991)

    Article  Google Scholar 

  4. Kłosowski, P., Zagubień, A., Woznica, K.: Investigation on rheological properties of technical fabric “Panama”. Arch. Appl. Mech. 73(9–10), 661–681 (2004)

    Article  Google Scholar 

  5. Chen, S., Ding, X., Fangueiro, R., Yi, H., Ni, J.: Tensile behavior of PVC-coated woven membrane materials under uni- and bi-axial loads. J. Appl. Polym. Sci. 107(3), 2038–2044 (2008). doi:10.1002/app.27303

    Article  Google Scholar 

  6. Yingying, Z., Xiaoguang, S., Qilin, Z., Henglin, L.: Fracture failure analysis and strength criterion for PTFE-coated woven fabrics. J. Compos. Mater. 49(12), 1409–1421 (2014). doi:10.1177/0021998314534706

    Article  Google Scholar 

  7. Ambroziak, A., Kłosowski, P.: Mechanical properties for preliminary design of structures made from PVC coated fabric. Constr. Build. Mater. 50, 74–81 (2014). doi:10.1016/j.conbuildmat.2013.08.060

    Article  Google Scholar 

  8. Ou, Y., Zhu, D.: Tensile behavior of glass fiber reinforced composite at different strain rates and temperatures. Constr. Build. Mater. 96, 648–656 (2015). doi:10.1016/j.conbuildmat.2015.08.044

    Article  Google Scholar 

  9. Ambroziak, A., Kosowski, P.: Influence of thermal effects on mechanical properties of PVDF-coated fabric. J. Reinf. Plast. Compos. 33(7), 663–673 (2013). doi:10.1177/0731684413512705

    Article  Google Scholar 

  10. Tsai, S.W.: Strength & life of composites. Stanford University, (2008)

  11. Deng, X., Chawla, N.: Three-dimensional (3D) modeling of the thermoelastic behavior of woven glass fiber-reinforced resin matrix composites. J. Mater. Sci. 43(19), 6468–6472 (2008). doi:10.1007/s10853-008-2982-6

    Article  Google Scholar 

  12. Alzina, A., Toussaint, E., Béakou, A.: Multiscale modeling of the thermoelastic behavior of braided fabric composites for cryogenic structures. Int. J. Solids Struct. 44(21), 6842–6859 (2007). doi:10.1016/j.ijsolstr.2007.03.013

    Article  Google Scholar 

  13. Li, J., Kwok, K., Pellegrino, S.: Thermoviscoelastic models for polyethylene thin films. Mech. Time-Dependent Mater. 20(1), 13–43 (2015). doi:10.1007/s11043-015-9282-8

    Article  Google Scholar 

  14. Roh, J.-H., Lee, H.-G., Lee, I.: Thermoelastic behaviors of fabric membrane structures. Adv. Compos. Mater. 17(4), 319–332 (2008). doi:10.1163/156855108x385285

    Article  Google Scholar 

  15. Kang, W., Suh, Y., Woo, K., Lee, I.: Mechanical property characterization of film-fabric laminate for stratospheric airship envelope. Compos. Struct. 75(1–4), 151–155 (2006). doi:10.1016/j.compstruct.2006.04.060

    Article  Google Scholar 

  16. Rand, J.L., Wakefield, D.: Studies of thin film nonlinear viscoelasticity for superpressure balloons. Adv. Space Res. 45(1), 56–60 (2010). doi:10.1016/j.asr.2009.09.004

    Article  Google Scholar 

  17. Mustafa, G., Suleman, A., Crawford, C.: Probabilistic micromechanical analysis of composite material stiffness properties for a wind turbine blade. Compos. Struct. 131, 905–916 (2015). doi:10.1016/j.compstruct.2015.06.070

    Article  Google Scholar 

  18. Upadhyaya, P., Upadhyay, C.S.: A three-dimensional micromechanical model to predict the viscoelastic behavior of woven composites. Compos. Struct. 93(11), 2733–2739 (2011). doi:10.1016/j.compstruct.2011.05.031

    Article  Google Scholar 

  19. Kim, M., Song, J.I.: Geometry effect on mechanical properties of woven fabric composites. J. Cent. South Univ. Technol. 18(6), 1985–1993 (2011). doi:10.1007/s11771-011-0932-y

  20. Beers, D., Ramirez, J.: Vectran high-performance fibre. J. Text. Inst. 81(4), 561–574 (1990)

    Article  Google Scholar 

  21. Young, L.: CTE curve fitting data. NASA balloon program office report (2010).

  22. Chawla, K.K.: Metal matrix composites. Wiley Online Library, (2006).

  23. Schapery, R.A.: Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater. 2(3), 380–404 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyun Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., Cao, S., Qu, Z. et al. Thermoelasticity of a Fabric Membrane Composite for the Stratospheric Airship Envelope Based on Multiscale Models. Appl Compos Mater 24, 209–220 (2017). https://doi.org/10.1007/s10443-016-9522-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9522-3

Keywords

Navigation