Skip to main content
Log in

A Modeling Approach to Fiber Fracture in Melt Impregnation

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The effect of process variables such as roving pulling speed, melt temperature and number of pins on the fiber fracture during the processing of thermoplastic based composites was investigated in this study. The melt impregnation was used in this process of continuous glass fiber reinforced thermoplastic composites. Previous investigators have suggested a variety of models for melt impregnation, while comparatively little effort has been spent on modeling the fiber fracture caused by the viscous resin. Herein, a mathematical model was developed for impregnation process to predict the fiber fracture rate and describe the experimental results with the Weibull intensity distribution function. The optimal parameters of this process were obtained by orthogonal experiment. The results suggest that the fiber fracture is caused by viscous shear stress on fiber bundle in melt impregnation mold when pulling the fiber bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Xing L., Jiang S., Zhou Z.: Progress of manufacturing technology development of advanced polymer matrix composites. Acta Materiae Compositae Sinica. 30(2), 1–9 (2013)

    Google Scholar 

  2. Bohm R., Hufnagl E., Kupfer R., Engler T., Hausding J., Cherif C., Hufenbach W.: Thermoplastic composites reinforced with textile grids: development of a manufacturing chain and experimental characterization. Appl. Compos. Mater. 20(6), 1077–1096 (2013)

    Article  Google Scholar 

  3. Bozic M., Fleischhauer R., Kaliske M.: Thermomechanical modeling of fiber reinforced material including interphasial properties and its application to epoxy/glass. Eng. Comput. 33(4), 1259–1281 (2016)

    Article  Google Scholar 

  4. Risicato J., Kelly F., Soulat D., Legrand X., Trumper W., Cochrane C., Koncar V.: A complex shaped reinforced thermoplastic composite part made of commingled yarns with integrated sensor. Appl. Compos. Mater. 22(1), 81–98 (2015)

    Article  Google Scholar 

  5. Marissen R., Drift L.T.V.D., Sterk J.C.: Folding of continous fibre thermoplastic composites. Appl. Compos. Mater. 4(5), 273–282 (1997)

    Article  Google Scholar 

  6. Vallittu P.K.: Impregnation of glass fibres with polymethylmethacrylate using a power-coating method. Appl. Compos. Mater. 2(1), 51–58 (1995)

    Article  Google Scholar 

  7. Haffner S.M., Friedrich K., Hogg P.J., Busfield J.J.C.: Finite element assisted modelling of the microscopic impregnation process in thermoplastic preforms. Appl. Compos. Mater. 5(4), 237–255 (1998)

    Article  Google Scholar 

  8. Steggall-Murphy C., Simacke P., Advani S.G., Yarlagdda S., Walsh S.: A model for thermoplastic melt impregnation of fiber bundles during consolidation of power-impregnated continuous fiber composites. Compos. A: Appl. Sci. Manuf. 41(1), 93–100 (2010)

    Article  Google Scholar 

  9. Xian G., Pu H.T., Yi X.S., Pan Y.: Parametric optimization of pin-assisted-melt impregnation of glass fiber/polypropylene by taguchi method. J. Compos. Mater. 40(23), 2087–2097 (2006)

    Article  Google Scholar 

  10. Varvani-Farahani A.: Composite materials: characterization, fabrication and application-research challenges and directions. Appl. Compos. Mater. 17(2), 63–67 (2000)

    Article  Google Scholar 

  11. Gurvich M.R., Dibenedetto A.T., Pegoretti A.: Evaluation of the statistical parameters of a Weibull distribution. J. Mater. Sci. 32(14), 3711–3716 (1997)

    Article  Google Scholar 

  12. Turkovich R., Erwin L.: Fiber fracture in reinforced thermoplastic processing. Polym. Eng. Sci. 23(13), 743–749 (1983)

    Article  Google Scholar 

  13. Astrom B.T., Pipes R.B.: A modeling approach to thermoplastic pultrusion. I: Formulation of models. Polym. Compos. 14(3), 173–183 (1993)

    Article  Google Scholar 

  14. Astrom B.T., Pipes R.B.: A modeling approach to thermoplastic pultrusion. II: Verification of models. Polym. Compos. 14(3), 184–194 (1993)

    Article  Google Scholar 

  15. Srinivasagupta D., Potaraju S., Kardos J.L., Joseph B.: Steady state and dynamic analysis of a bench-scale injected pultrusion process. Compos. A: Appl. Sci. Manuf. 34(9), 835–846 (2003)

    Article  Google Scholar 

  16. Yun M.S., Lee W.I.: Analysis of pulling force during pultrusion process of phenolic foam composites. Compos. Sci. Technol. 68(1), 140–146 (2008)

    Article  Google Scholar 

  17. Durin A., Micheli P.D., Ville J., Inceoglu F., Valette R., Vergnes B.: A matricial approach of fibre breakage in twin-screw extrusion of glass fibres reinforced thermoplastics. Compos. A: Appl. Sci. Manuf. 48, 47–56 (2013)

    Article  Google Scholar 

  18. R’Mili M., Bouchaour T., Merle P.: Estimation of Weibull parameters from loose-bundle tests. Compos. Sci. Technol. 56(7), 831–834 (1996)

    Article  Google Scholar 

  19. Chen C.: Mathematical modeling for the pultrusion of polymethyl methacrylate based composites. J. Appl. Polym. Sci. 123(4), 2228–2233 (1996)

    Article  Google Scholar 

  20. Chen C., Chen I.: The unidirectional glass fiber reinforced furfuryl alcohol for pultrusion. II. Correlation of processing parameters for optimizing the process. J. Appl. Polym. Sci. 119(3), 1788–1796 (2011)

    Article  Google Scholar 

  21. Gaymans R.J., Wevers E.: Impregnation of a glass fibre roving with a polypropylene melt in a pin assisted process. Compos. A: Appl. Sci. Manuf. 29(5–6), 663–670 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51273019). The authors are also thankful for the beneficial suggestions and comments from the editor and reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, F., Zhang, C., Yu, Y. et al. A Modeling Approach to Fiber Fracture in Melt Impregnation. Appl Compos Mater 24, 193–207 (2017). https://doi.org/10.1007/s10443-016-9521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9521-4

Keywords

Navigation