Skip to main content
Log in

A Discrete Model for Simulation of Composites Plate Impact Including Coupled Intra- and Inter-ply Failure

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Laminated composites can undergo complex damage mechanisms when subjected to transverse impact. For unidirectional laminates it is well recognized that delamination failure usually initiates via intra-ply shear cracks that run parallel to the fibres. These cracks extend to the interface of adjacent orthogonal plies, where they are either stopped, or propagate further as inter-ply delamination cracks. These mechanisms largely determine impact energy absorption and post-delamination bending stiffness of the laminate. Important load transfer mechanisms will occur that may lead to fibre failure and ultimate rupture of the laminate. In recent years most Finite Element (FE) models to predict delamination usually stack layers of ply elements with interface elements to represent inter-ply stiffness and treat possible delamination. The approach is computationally efficient and does give some estimate of delamination zones and damaged laminate bending stiffness. However, these models do not properly account for coupled intra-ply shear failure and delamination crack growth, and therefore cannot provide accurate results on crack initiation and propagation. An alternative discrete meso-scale FE model is presented that accounts for this coupling, which is validated against common delamination tests and impact delamination from the Compression After Impact (CAI) test. Ongoing research is using damage prediction from the CAI simulation as a basis for residual strength analysis, which will be the published in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. AIRBUS.: AITM1-0010 determination of compression strength after impact, (2005)

  2. Sanchez-Saez, S., Barbero, E., Zaera, R., Navarro, C.: Compression after impact of thin composite laminates. Compos. Sci. Technol. 65, 1911–1919 (2005)

    Article  Google Scholar 

  3. Davies A.O., Olsson R.: Impact on composite structures. Aeronaut. J, p. 541–563, (2004)

  4. Choi, H.Y., Chang, F.-K.: A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact. Int. J. Solids Struct. 26(26), 2134–2169 (1992)

    Google Scholar 

  5. Richardson M, Wisheart M.: Review of low velocity impact properties of composite material. Compos. A: Appl. Sci. Manuf. 1123–1131 (1996)

  6. Finn, S.R., Springer, G.S.: Composite plates impact damage. Technomic Publishing Company, Inc. An Atlas, Lancaster (1991)

    Google Scholar 

  7. Abrate S.: Modeling of impacts on composite structures. Compos. Struct. 129–138 (2001)

  8. Dahsin L.: Impact-induced delamination‐a view of bending stiffness mismatching. J. Compos. Mater., 674–692, (1988)

  9. LLOrca, J., González, C.: Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv. Mater. 23(44), 5130–5147 (2011)

    Article  Google Scholar 

  10. Wisnom, M.: Modelling discrete failures in composites with interface elements. Compos. Part A 41, 795–805 (2010)

    Article  Google Scholar 

  11. Park, K., Paulino, G.H.: Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl. Mech. Rev. 64, 1–20 (2011)

    Google Scholar 

  12. Puck, A.: Festigkeitsanalyse von Faser-Matrix-Laminaten: Modelle für die Praxis. Hanser, München (1996)

    Google Scholar 

  13. Hashin Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, (1980)

  14. Ladevèze, P., Lubineau, G., Violeau, D.: A computational damage micromodel of laminated composites. Int. J. Fract. 137(1–4), 139–150 (2006)

    Article  Google Scholar 

  15. Allix, O., Ladevèze, P.: Interlaminar interface modelling for the prediction of delamination. Compos. Struct. 22, 235–242 (1992)

    Article  Google Scholar 

  16. Dávila, C.G., Camanho, P.P., Turon, A.: Effective simulation of delamination in aeronautical structures using shells and cohesive elements. J. Aircr. 45(2), 663–672 (2008)

    Article  Google Scholar 

  17. Batra R, Gopinath G, Zheng J. Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates. Compos Struct. (2011)

  18. Camanho, P., Davila, C.G., Moura, M.D.A.: Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37(16), 1415–1438 (2003)

    Article  Google Scholar 

  19. Pickett, A.K., Fouinneteau, M.R.C., P, M.: Test and modelling of impact pre-loaded composite panels. Appl. Compos. Mater. 16(4), 225–244 (2009)

    Article  Google Scholar 

  20. Hillerborg, A., Modeer, M., Petersson, P.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr. Res. 6(6), 773–781 (1976)

    Article  Google Scholar 

  21. Shi Y, Swait T, Soutis C.: Modelling damage evolution in composite laminates subjected to low velocity impact. Compos. Struct. (2012)

  22. Zhang X.: Impact damage in composite aircraft structures - experimental testing and numerical simulation. J Aerosp. Eng. 221–245 (1998)

  23. Lammerant L, Verpoest I. Modelling of the interaction between matrix cracks and delamination during impact of composite plates. Compos. Sci. Technol. 1171–1178 (1996)

  24. Moura, M.D.A., Gonclaves, J.: Modelling the interaction between matrix cracking and delamination in carbon?epoxy laminates under low velocity impact. Compos. Sci. Technol. 64(7–8), 1021–1027 (2004)

    Article  Google Scholar 

  25. Zhang, Y., Zhu, P., Lai, X.: Finite element analysis of low-velocity impact damage in composite laminated plates. Mater. Des. 27(6), 513–519 (2006)

    Article  Google Scholar 

  26. Bouvet, C., Castanié, B., Bizeul, M., Barrau, J.-J.: Low velocity impact modelling in laminate composite panels with discrete interface elements. Int. J. Solids Struct. 46(14–15), 2809–2821 (2009)

    Article  Google Scholar 

  27. Geubelle P.H, Baylor J.S.: Impact-induced delamination of composites: a 2D simulation.Compos. Part B: Eng. 589–602 (1998)

  28. Hallett, S., Green, B., Jiang, W., Wisnom, M.: An experimental and numerical investigation into the damage mechanisms in notched composites. Compos. Part A 40, 613–624 (2009)

    Article  Google Scholar 

  29. esi-group.: Virtual Performance Soklution - Solver Referece Manual, (2012)

  30. Deutsches Institut für Normung.: CFK Bestimmung energiefreisetzungsrate G1C-Test, Mai (1996)

  31. Deutsches Institut für Normung.: CFK Bestimmung Energiefreisetzungsrate G2C-Test, April (1996)

  32. W, N.A., P, A.K., Lourenco, N.S.F.: Mixed mode delamination - experimental and numerical studies. J. Strain Anal. 39(4), 153 (2003)

    Article  Google Scholar 

  33. Camanho, P.P., Davila, C.G., Pinho, S.T., Remmers, J.J.C. (eds.): Mechanical Response of Composite, 10th edn. Springer, Berlin (2008)

    Google Scholar 

  34. Deutsches Institut für Normung.: Aerospace series - Carbon fibre laminates - Determination of the fibre-, resin- and void contents, August (1998)

  35. Bowden, T., Reichert, J., Landolt, J.P.J.: The data acquisition system at the DCIEM impact studies facility. SAE Tech. Pap. 810812 (1981)

Download references

Acknowledgments

This publication is a result of a co-operation project between the national aeronautics and space research centre of the Federal Republic of Germany (DLR) and the University Stuttgart. The authors acknowledge the financial support received for this work from the Helmholz-Gemeinschaft and the state of Baden-Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Jäger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jäger, S., Pickett, A. & Middendorf, P. A Discrete Model for Simulation of Composites Plate Impact Including Coupled Intra- and Inter-ply Failure. Appl Compos Mater 23, 179–195 (2016). https://doi.org/10.1007/s10443-015-9455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-015-9455-2

Keywords

Navigation