Skip to main content
Log in

The Role of Viscoelasticity on the Fatigue of Angle-ply Polymer Matrix Composites at High and Room Temperatures- A Micromechanical Approach

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A micromechanical approach is adopted to study the role of viscoelasticity on the fatigue behavior of polymer matrix composites. In particular, the study examines the interaction of fatigue and creep in angle ply carbon/epoxy at 25 and 114 °C. The matrix phase is modeled as a vicoelastic material using Schapery’s single integral constitutive equation. Taking viscoelsticity into account allows the study of creep strain evolution during the fatigue loading. The fatigue failure criterion is expressed in terms of the fatigue failure functions of the constituent materials. The micromechanical model is also used to calculate these fatigue failure functions from the knowledge of the S-N diagrams of the composite material in longitudinal, transverse and shear loadings thus eliminating the need for any further experimentation. Unlike the previous works, the present study can distinguish between the strain evolution due to fatigue and creep. The results can clearly show the contribution made by the effect of viscoelasticity to the total strain evolution during the fatigue life of the specimen. Although the effect of viscoelsticity is found to increase with temperature, its contribution to strain development during fatigue is compromised by the shorter life of the specimen when compared to lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jen, M.R., Lee, C.H.: Strength and life in thermoplastic composite laminates under static and fatigue loads. Part II: formulation. Int. J. Fatigue 20, 617–629 (1998)

    Article  Google Scholar 

  2. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7, 448–464 (1973)

    Article  Google Scholar 

  3. Montesano, J., Fawaz, Z. Behdinan, K., Poon, C.: Fatigue of polymer matrix composites at elevated temperatures. Polymer Science and Technology, Nova Science Publishers, Inc. 2011

  4. Sun, C.T., Vaidya, R.S.: Prediction of composite properties from a representative volume element. Comp. Sci. Technol. 56, 171–179 (1996)

    Article  Google Scholar 

  5. Xia, Z., Chen, Y., Ellyin, F.: A meso/μ-mechanincal model for damage progression in glass-fiber/epoxy cross-ply laminates by finite-element analysis. Comp. Sci. Technol. 60, 1171–1179 (2000)

    Article  Google Scholar 

  6. Song, S., Waas, A.M., Shahwan, K.W., Xiao, X., Faruque, O.: Braided textile composites under compressive loads: modeling the response, strength and degradation. Comp. Sci. Technol. 67, 3059–3070 (2007)

    Article  Google Scholar 

  7. Guo-Dong, F., Jun, L., Bao-Lai, W.: Progressive damage and nonlinear analysis of 3D four directional braided composites under uniaxial tension. Comp. Struct. 89, 126–133 (2009)

    Article  Google Scholar 

  8. Aboudi, J.: Miromechanics prediction of fatigue failure of composite materials. J. Reinf. Plast. Compos. 8, 150–166 (1989)

    Article  Google Scholar 

  9. Reifsnider, K.L., Gao, Z.: A micromechanics model for composites under fatigue loading. Int. J. Fatigue 13, 149–156 (1991)

    Article  Google Scholar 

  10. Huang, Z.M.: Micromechanical life prediction for composite laminates. Mech. Mater. 33, 185–199 (2001)

    Article  Google Scholar 

  11. Crowther, M.F., Wyattt, R.C., Phillips, M.G.: Creep fatigue interactions in glass/polyester composites. Compos. Sci. Technol. 36, 191–210 (1989)

    Article  Google Scholar 

  12. Hwang,W., Han, K.S.: Fatigue of composite materials- damage model and life prediction. In: Lagace, P.A., editor. Composite materials: fatigue and fracture, ASTM STP 1012. American Society for Testing and Materials (1989), 87–02

  13. Petermann, J., Schulte, K.: The effects of creep and fatigue stress ratio on the long –term behavior of angle-ply CFRP. Compos. Struct. 57, 205–210 (2002)

    Article  Google Scholar 

  14. Muliana, A.H., Rami, H.A.: Numerical finite element formulation of Schapery non-linear viscoelastic material. Int. J. Numer. Meth. Engng. 59, 25–45 (2004)

    Article  Google Scholar 

  15. Walrath, D.E.: Viscoelastic response of a unidirectional composite containing two viscoelastic constituents. Exper. Mechan. 31, 111–117 (1991)

    Article  Google Scholar 

  16. Lai, J., Bakker, A.: 3-D schapery representation for non-linear viscoelasticity and finite element implementation. Comput. Mech. 18, 182–191 (1996)

    Article  Google Scholar 

  17. Falahgar, S.R., Salehi, M., Mohammadi Aghdam, M.: Micro–macro analysis of viscoelastic unidirectional laminated composite plates using DR method. Appl. Compos. Mater. 17, 427–440 (2010)

    Article  Google Scholar 

  18. Aboudi, J.: Continuum theory for fiber-reinforced elastic-visco-plastic composites. Int. J. ENgng. Sci. 20, 605–621 (1982)

    Article  Google Scholar 

  19. Robertson, D.D., Mall, S.: Micromechanical relations for fiber-reinforced composites using the free transverse shear approach. J Compos Tech Res. 15, 181–192 (1993)

    Article  Google Scholar 

  20. Robertson, D.D., Mall, S.: A non-linear micromechanics-based analysis of metal-matrix composite laminates. Compos. Sci. Technol. 52, 319–33 (1994)

    Article  Google Scholar 

  21. Aghdam, M.M., Smith, D.J., Pavier, M.J.: Finite element micromechanical modeling of yield and collapse behavior of metal matrix composites. J. Mech. Phys. Solids. 48, 499–528 (2000)

    Article  Google Scholar 

  22. Aghdam, M.M., Dezhsetan, A.: Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model. Compos. Struct. 71, 327–332 (2005)

    Article  Google Scholar 

  23. Falahatgar, S.R., Salehi, M., Aghdam, M.M.: Nonlinear viscoelastic response of unidirectional fiber reinforced composites in off-axis loading. J. Reinf. Plast. Compos. 28, 1793–1812 (2009)

    Article  Google Scholar 

  24. Aboudi, J.: Micromechanical analysis of the strength of unidirectional fiber composites. Compos. Sci. Technol. 33, 79–96 (1988)

    Article  Google Scholar 

  25. Ramakrishnan, V., Jayaraman, N.: Mechanistically based fatigue-damage evolution model for brittle matrix fiber-reinforced composites. J. Mater. Sci. 28, 5592–5602 (1993)

    Article  Google Scholar 

  26. Agarwal, B.D., Broutman, L.J., Chandrashekhara, K.: Analysis and performance of fiber composites. John Wiley and Sons, Inc. 2006

  27. Kibler, K.G., Carter, H.G.: Viscoelastic parameters of epoxy resin from thermomechanical and electrical conductivity measurements In: Tsai, S.W., editor. Composite materials: Testing and Design, ASTM STP 674. American Society for Testing and Materials (1979), 282–288

  28. Haj-Ali, R.M., Muliana, A.H.: A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures. Int J Solid Struct. 41, 3461–3490 (2004)

    Article  Google Scholar 

  29. Tuttle, M.E., Brinson, H.F.: Prediction of long-term creep compliance of general composite laminates. Exp. Mech. 26, 89–102 (1986)

    Article  Google Scholar 

  30. Rotem, A., Nelson, H. G.: A temperature-dependent fatigue failure criterion for graphite/epoxy laminates, NASA Technical Memorandum 78538, California (1978)

Download references

Acknowledgments

The authors would like to gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada through its Discovery Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zouheir Fawaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayyidmousavi, A., Bougherara, H. & Fawaz, Z. The Role of Viscoelasticity on the Fatigue of Angle-ply Polymer Matrix Composites at High and Room Temperatures- A Micromechanical Approach. Appl Compos Mater 22, 307–321 (2015). https://doi.org/10.1007/s10443-014-9409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-014-9409-0

Keywords

Navigation