Applied Composite Materials

, Volume 21, Issue 6, pp 861–884 | Cite as

Numerical Simulation of Impact Damage Induced by Orbital Debris on Shielded Wall of Composite Overwrapped Pressure Vessel

  • Aleksandr CherniaevEmail author
  • Igor Telichev


This paper presents a methodology for numerical simulation of the formation of the front wall damage in composite overwrapped pressure vessels under hypervelocity impact. Both SPH particles and Lagrangian finite elements were employed in combination for numerical simulations. Detailed numerical models implementing two filament winding patterns with different degree of interweaving were developed and used to simulate 2.5 km/s and 5.0 km/s impacts of 5 mm-diameter spherical aluminum-alloy projectile. Obtained results indicate that winding pattern may have a pronounced effect on vessel damage in case of orbital debris impact, influencing propagation of the stress waves in composite material.


Hypervelocity impact (HVI) Composite overwrapped pressure vessels (COPV) Numerical simulation Smooth particles hydrodynamics (SPH) Finite elements method (FEM) 


  1. 1.
    Inter-Agency Space Debris Coordination Committee Protection Manual. IADC-04-03 Ver. 4.0, 12 April 2011Google Scholar
  2. 2.
    Rucker, R.A.: Demonstration of hazardous hypervelocity test capability. NASA JSC TR 692–001 (1991)Google Scholar
  3. 3.
    Christiansen, E.L., Kerr, J.H., Whitney, J.P.: Debris cloud ablation in gas-filled pressure vessels. Int. J. Impact Eng. 20, 173–184 (1997)CrossRefGoogle Scholar
  4. 4.
    Schaefer, F., Schneider, E., Lambert, M., Mayseless, M.: Propagation of hypervelocity impact fragment clouds in pressure gas. Int. J. Impact Eng 20, 697–710 (1997)CrossRefGoogle Scholar
  5. 5.
    Schaefer, F., Schneider, E., Lambert, M.: Impact fragment cloud propagating in a pressure vessel. Acta Astronaut 39, 31–40 (1997)CrossRefGoogle Scholar
  6. 6.
    Schaefer, F., Schneider, E., Lambert, M.: An experimental study to investigate hypervelocity impacts on pressure vessels. In: Proceedings of the Second European Conference on Space Debris, ESDC, Darmstadt, Germany, March 1997Google Scholar
  7. 7.
    Lambert, M., Schneider, E.: Hypervelocity impacts on gas-filled pressure vessels. Int. J. Impact Eng. 20, 491–498 (1997)CrossRefGoogle Scholar
  8. 8.
    Schaefer, F., Schneider, E., Lambert, M.: Impact damage on shielded gas-filled vessels. In: Proceedings of the Second European Conference on Space Debris, European Space Operations Centre, Darmstadt, Germany, vol. 2, 21 March 2001Google Scholar
  9. 9.
    Olsen, G.D., Nolen, A.M.: Hypervelocity impact testing of pressure vessels to simulate spacecraft failure. Int. J. Impact Eng. 26, 555–566 (2001)CrossRefGoogle Scholar
  10. 10.
    Guan, G., Pang, B., Ha, Y.: Investigation into damage of aluminum gas-filled pressure vessels under hypervelocity impact. Key Eng. Mater. 348–349, 785–788 (2007)CrossRefGoogle Scholar
  11. 11.
    Palmeri, D., Schaefer, F., Hiermaier, S., Lambert, M.: Numerical simulation of non-perforating impacts on shielded gas-filled pressure vessels. Int. J. Impact Eng. 26, 591–602 (2001)CrossRefGoogle Scholar
  12. 12.
    Telitchev, I.Y., Schaefer, F.K., Schneider, E.E., Lambert, M.: Analysis of the fracture of gas-filled pressure vessels under hypervelocity impact. Int. J. Impact Eng. 23, 905–919 (1999)CrossRefGoogle Scholar
  13. 13.
    Telitchev, I.Y., Eskin, D.: Engineering model for simulation of debris cloud propagation inside gas-filled pressure vessels. Int. J. Impact Eng. 29, 703–712 (2003)CrossRefGoogle Scholar
  14. 14.
    Telitchev, I.Y.: Analysis of burst conditions of shielded pressure vessels subjected to space debris impact. J. Press. Vessel. Technol. 127, 179–183 (2005)CrossRefGoogle Scholar
  15. 15.
    ISS Nitrogen/Oxygen Recharge System. Composite Overwrapped Pressure Vessel Concept. NASA NESC-RP-09-00538 (2009)Google Scholar
  16. 16.
    Maveyraud, C., Vila, J.P., Sornette, D., Le Floc’h, C., Dupillier, J.M., Salome, R.: Numerical modeling of the behavior of high pressure vessel under hypervelocity impact. Mech. Ind. 2, 57–62 (2001)Google Scholar
  17. 17.
    Hayhurst, C.J., Hiermaier, S.J., Clegg, R.A., Riedel, W., Lambert, M.: Development of material models for Nextel and Kevlar-epoxy for high pressures and strain rates. Int. J. Impact Eng. 23, 365–376 (1999)CrossRefGoogle Scholar
  18. 18.
    White, D.M., Taylor, E.A., Clegg, R.A.: Numerical simulation and experimental characterization of direct hypervelocity impact on a spacecraft hybrid carbon fibre/Kevlar composite structure. Int. J. Impact Eng. 29, 779–790 (2003)CrossRefGoogle Scholar
  19. 19.
    ANSYS AUTODYN User’s Manual. Release 14.0, 2011Google Scholar
  20. 20.
    Peters, S.T.: Composite filament winding. ASM International, Materials Park (2011)Google Scholar
  21. 21.
    Peters, S.T., Lowrie, J.: Filament winding. In: ASM Handbook, vol. 21 - Composites, pp. 1281–1283. ASM International, Ohio (2001)Google Scholar
  22. 22.
    Pezzica, G., Destefanis, R., Faraud, M.: Numerical simulation of orbital debris impact on spacecraft. In: International Conference on Structures Under Shock and Impact, SUSI, pp. 275–284 (1996)Google Scholar
  23. 23.
    Monaghan, J.J.: Smooth particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)CrossRefGoogle Scholar
  24. 24.
    Hayhurst, C.J., Clegg, R.: Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates. Int. J. Impact Eng. 20, 337–348 (1997)CrossRefGoogle Scholar
  25. 25.
    Hayhurst, C.J., Livingstone, I.H., Clegg, R., Fairlie, G.E., Hiermaier, S.J., Lambert, M.: Numerical simulation of hypervelocity impacts on aluminum and Nextel/Kevlar Whipple shields. In: Proceedings of Hypervelocity Shielding Workshop, 8–11 March 1998, Galveston, TexasGoogle Scholar
  26. 26.
    Faraud, M., Destefanis, R., Palmeri, D., Marchetti, M.: SPH simulations of debris impacts using two different computer codes. Int. J. Impact Eng. 23, 249–260 (1999)CrossRefGoogle Scholar
  27. 27.
    Michel, Y., Chevalier, J.-M., Durin, C., Espinosa, C., Malaise, F., Barrau, J.-J.: Hypervelocity impacts on thin brittle targets: Experimental data and SPH simulations. Int. J. Impact Eng. 33, 441–451 (2006)CrossRefGoogle Scholar
  28. 28.
    Clegg, R.A., White, D.M., Riedel, W., Harwick, W.: Hypervelocity impact damage predictions in composites: Part I - material model and characterization. Int. J. Impact Eng. 33, 190–200 (2006)CrossRefGoogle Scholar
  29. 29.
    AUTODYN® Composite Modelling. Revision 1.3. Release 14.0, 2011Google Scholar
  30. 30.
    Ryan, S., Wicklein, M., Mouritz, A., Riedel, W., Shafer, F., Thoma, K.: Theoretical prediction of dynamic composite material properties for hypervelocity impact simulations. Int. J. Impact Eng. 36, 899–912 (2009)CrossRefGoogle Scholar
  31. 31.
    Chen, J.K., Allahdadi, F.A., Sun, C.T.: A quadratic yield function for fiber-reinforced composites. J. Compos. Mater. 31, 788–811 (1997)CrossRefGoogle Scholar
  32. 32.
    Sun, C.T., Chen, J.L.: A simple flow rule for characterizing nonlinear behavior of fiber composites. J. Compos. Mater. 23, 1009–1020 (1989)CrossRefGoogle Scholar
  33. 33.
    Hou, J.P., Petrinic, N., Ruiz, C.: Prediction of impact damage in composite plates. Compos. Sci. Technol. 60, 273–281 (2000)CrossRefGoogle Scholar
  34. 34.
    Wicklein, M., Ryan, S., White, D.M., Clegg, R.A.: Hypervelocity impact on CFRP: Testing, material modelling, and numerical simulation. Int. J. Impact Eng. 35, 1861–1869 (2008)CrossRefGoogle Scholar
  35. 35.
    Dugdale, J., MacDonald, D.K.C.: The thermal expansion of solids. Phys. Rev. 89, 832–834 (1953)CrossRefGoogle Scholar
  36. 36.
    Chamis, C.C.: Simplified composite micromechanics equations for strength fracture toughness impact resistance and environmental effects. NASA TM – 83696 (1984)Google Scholar
  37. 37.
    Corbett, B.M.: Numerical simulations of target hole diameters for hypervelocity impacts into elevated and room temperature bumpers. Int. J. Impact Eng. 33, 431–440 (2006)CrossRefGoogle Scholar
  38. 38.
    Herakovich, C.T.: Mechanics of fibrous composites. John Wiley & Sons, Inc, New York (1998)Google Scholar
  39. 39.
    Elices, M., Guinea, G.V., Gomez, J., Planas, J.: The cohesive zone model: advantages, limitations and challenges. Eng. Fract. Mech. 69, 137–163 (2002)CrossRefGoogle Scholar
  40. 40.
    Kerth, S., Dehn, A., Ostgathe, M., Maier, M.: Experimental investigation and numerical simulation of the crush behavior of composite structural parts. In: Proceedings of the 41st International SAMPE Symposium and Exhibition. 2, pp. 1397–1408 (1996)Google Scholar
  41. 41.
    Fleming, D.C.: Delamination modeling of composites for improved crash analysis. NASA/CR-1999-209725 (1999)Google Scholar
  42. 42.
    Niezgoda, T., Barnat, W.: Numerical analysis of progressive failure of composite energy absorbing structures. J. KONES Powertrain Transp 15, 169–181 (2008)Google Scholar
  43. 43.
    Tennyson, R.C., Lamontagne, C.: Hypervelocity impact damage to composites. Compos. Part A 31, 785–794 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations