Skip to main content
Log in

On Remarkable Loss Amplification Mechanism in Fiber Reinforced Laminated Composite Materials

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this present work, we investigate damping behavior of filled and layered composite material that has its inclusions coated by viscoelastic coating material. To analyze its behavior, we use generalized self-consistent Eshelby method with correspondence principle approach. The viscous coating layer is assumed to possess properties at its glass transition temperature. This analytical study reveals that at ultra thin coating layer, the composite exhibits very high loss characteristics where its effective loss moduli significantly exceed the loss moduli of both coating and matrix materials. High shearing dissipation mechanism in ultra thin layer of viscoelastic coating material is found to be responsible for this peculiar behavior. This remarkable loss amplification effect is technologically appealing as such composites with high damping and high stiffness properties might be attainable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Finegan, I.C., Gibson, R.F.: Analytical modeling of damping at micromechanical level in polymer composites reinforced with coated fibers. Compos. Sci. Technol. 60, 1077–1084 (2000)

    Article  Google Scholar 

  2. Neagu, R.C., Bourban, P.E., Manson, J.E.: Micromechanics and damping properties of composite integrating shear thickening fluids. Compos. Sci. Technol. 69, 515–522 (2009)

    Article  Google Scholar 

  3. Finegan, I.C., Gibson, R.F.: Recent research on enhancement of damping in polymer composites. Compos. Struct. 44, 89–98 (1999)

    Article  Google Scholar 

  4. Chandra, R., Singh, S.P., Gupta, K.: Damping studies in fiber-reinforced composites – a review. Compos. Struct. 46, 41–51 (1999)

    Article  Google Scholar 

  5. Ghinet, S., Attala, N.: Modeling thick composite laminate and sandwich structures with linear viscoelastic damping. Compos. Struct. 89, 1547–1561 (2011)

    Article  Google Scholar 

  6. Gibson, R.F.: A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct 92, 2793–2810 (2010)

    Article  Google Scholar 

  7. Kireitseu, M.: Vibration damping/dynamic properties of CNT-reinforced composite structures. NSTI Nanotech 1, 198–201 (2006)

    Google Scholar 

  8. Skandani, A., Masghouni, N., Case, S.W., Leo, D.J., Al-Haik, M.: Enhanced vibration damping of carbon fibers-ZnO nanorods hybrid composites. Appl. Phy. Lett. 101(7), 73–111 (2012)

    Google Scholar 

  9. He, S., Zhang, S., Lu, C., Wu, G., Yang, Y., An, F., Guo, J., Li, H.: Polymide nano-coating on carbon fibers by electrophoretic deposition. Colloids Surf. A Physicochem. Eng. Asp. 381, 118–122 (2011)

    Article  Google Scholar 

  10. Jones, D.I.G.: Handbook of viscoelastic vibration damping. Wiley, Chichester (2001)

    Google Scholar 

  11. Ramatowski, T.S.: Mixing and curing carboxy-terminated butadiene-nitrile rubber, epoxy resin and curing agent. United States Patent US7528195B2. May 5 (2009)

  12. Remillit, C.: Damping mechanism of polymers filled with elastic particles. J. Mech. Mater. 39, 525–537 (2007)

    Article  Google Scholar 

  13. Meaud, J., Sain, T., Hulbert, G.M., Waas, A.M.: Analysis and optimal design of layered composites with high stiffness and high damping. Int. J. Solids Struct. 50, 1342–1353 (2013)

    Article  Google Scholar 

  14. Lakes, R.S.: High damping composite materials: Effect of structural hierarchy. J. Compos. Mater. 36(3), 287–297 (2003)

    Article  Google Scholar 

  15. Berthelot, J.M., Assarar, M., Sefrani, Y., Mahi, A.E.: Damping of composite materials and structures. Compos. Struct. 85, 189–204 (2008)

    Article  Google Scholar 

  16. Yu, L., Ma, Y., Zhou, C., Xu, H.: Damping efficiency of the coating structure. Int. J. Solids Struct. 42, 3045–3058 (2005)

    Article  Google Scholar 

  17. Chandra, R., Singh, S.P., Gupta, K.: A study of damping in fiber-reinforced composites. J. Sound Vib. 262, 475–496 (2003)

    Article  Google Scholar 

  18. Fisher, F.T., Brinson, L.C.: Viscoelastic interphases in polymer-matrix composites: theoretical model and finite element analysis. Compos. Sci. Technol. 61, 731–748 (2001)

    Article  Google Scholar 

  19. Wei, P.J., Huang, Z.P.: Dynamic effective properties of the particle reinforced composites with viscoelastic interphase. Int. J. Solids Struct. 41, 6993–7007 (2004)

    Article  Google Scholar 

  20. Gusev, A.A., Lurie, S.A.: Loss amplification effect in multiphase materials with viscoelastic interfaces. Macromolecules 42(14), 5372–5377 (2009)

    Article  Google Scholar 

  21. Sain, T., Meaud, J., Hulbert, G., Arruda, E.M., Waas, A.M.: Simultaneously high stiffness and damping in a class of wavy layered composites. Compos. Struct. 101, 104–110 (2013)

    Article  Google Scholar 

  22. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusions, and related problem. Proc. R. Soc. A. 241(1226), 376–396 (1957)

    Article  Google Scholar 

  23. Christensen, R.M.: Mechanics of composite materials. Dover (2nd ed), New York (2005)

  24. Christensen, R.M., Lo, K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids. 27(4), 315–330 (1979)

    Article  Google Scholar 

  25. Christensen, R.M.: Critical evaluation for a class of micromechanics model. J. Mech. Phys. Solids. 38(3), 379–404 (1990)

    Article  Google Scholar 

  26. Herve, E., Zaoui, A.: N-layered inclusion-based micromechanical modeling. Int. J Eng. Sci. 31(1), 1–10 (1993)

    Article  Google Scholar 

  27. Hashin, Z.: Complex moduli of viscoelastic composites – I General theory and application to particulate composites. Int. J. Solids Struct. 6, 539–552 (1970)

    Article  Google Scholar 

  28. Hashin, Z.: Complex moduli of viscoelastic composites – II. Fiber reinforced materials. Int. J. Solids Struct. 6, 797–807 (1970)

    Article  Google Scholar 

  29. Berlyand, L.V., Kozlov, S.M.: Asymptotics of homogenized moduli for the elastic chess-board composites. Arch. Rational Mech. Anal. 118, 95–112 (1992)

    Article  Google Scholar 

  30. Berlyand, L.V., Promislow, K.: Effective elastic moduli of a soft medium with hard polygonal inclusions and extremal behavior of effective Poisson’s ratio. J. Elasticity. 40, 45–73 (1995)

    Article  Google Scholar 

  31. Berriot, J., Montes, H., Lequex, F., Long, D., Sotta, P.: Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules 35, 9756–9762 (2002)

    Article  Google Scholar 

  32. Heinrich, G., Kluppel, M., Vilgis, T.A.: Reinforcement of elastomers. Curr. Opin. Solid State Mater. Sci. 6, 195–203 (2002)

    Article  Google Scholar 

  33. Lurie, S.A., Belov, P.A., Rabinsky, L.N., Shavaronak, C.I.: Scale effects in the mechanics of continuous body of material with micro and nanostructure. MAI print, Moscow (2011) [In Russian]

    Google Scholar 

  34. Vasiliev, V.V., Tarnopolskii, Y.M.: Composite materials: Handbook. Mashinastroenie, Moscow (1990) [In Russian]

    Google Scholar 

  35. Tsukrov, I., Drach, B.: Elastic deformations of composite cylinders of cylindrically orthotropic layers. Int. J. Solids Structures. 47, 25–53 (2010)

    Article  Google Scholar 

  36. Chatzigeorgiou, G., Siedel, G.D., Lagoudas, D.: Effective mechanical of “fuzzy fiber” composites. Composites B. 43, 2577–2593 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Prof. Andrey Gusev (ETH) for extensive discussions and insight on this subject. This work was implemented with the support of Russian Foundation for Basic Research (grant no.12-01-00273-a, 11-01-12081 ofi-m) and Federal Target Program “Academic and Teaching Staff in Innovative Russia 2009-2013”, of state contracts No. 14.740.11.0995 and 02.740.11.0790.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lurie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lurie, S., Minhat, M., Tuchkova, N. et al. On Remarkable Loss Amplification Mechanism in Fiber Reinforced Laminated Composite Materials. Appl Compos Mater 21, 179–196 (2014). https://doi.org/10.1007/s10443-013-9371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-013-9371-2

Keywords

Navigation