Skip to main content
Log in

Interface Cohesive Elements to Model Matrix Crack Evolution in Composite Laminates

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, the transverse matrix (resin) cracking developed in multidirectional composite laminates loaded in tension was numerically investigated by a finite element (FE) model implemented in the commercially available software Abaqus/Explicit 6.10. A theoretical solution using the equivalent constraint model (ECM) of the damaged laminate developed by Soutis et al. was employed to describe matrix cracking evolution and compared to the proposed numerical approach. In the numerical model, interface cohesive elements were inserted between neighbouring finite elements that run parallel to fibre orientation in each lamina to simulate matrix cracking with the assumption of equally spaced cracks (based on experimental measurements and observations). The stress based traction-separation law was introduced to simulate initiation of matrix cracking and propagation under mixed-mode loading. The numerically predicted crack density was found to depend on the mesh size of the model and the material fracture parameters defined for the cohesive elements. Numerical predictions of matrix crack density as a function of applied stress are in a good agreement to experimentally measured and theoretically (ECM) obtained values, but some further refinement will be required in near future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Soutis, C.: Fibre reinforced cocmposites in aircraft constrction. Prog. Aerosp. Sci. 41(2), 143–151 (2005)

    Article  Google Scholar 

  2. Abrate, S.: Impact on Composite Structures. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  3. Davies, G.A.O., Olsson, R.: Impact on composite structures. Aeronaut. J. 108(1089), 541–563 (2004)

    Google Scholar 

  4. Kashtalyan, M., Soutis, C.: Analysis of composite laminates with intr- and interlaminar damage. Prog. Aerosp. Sci. 41, 152–173 (2005)

    Article  Google Scholar 

  5. Berbinau, P., Soutis, C., Goutas, P., Curtis, P.T.: Effect of off-axis ply orientation on 0o-fibre microbuckling. Compos. Part A 30, 1197–1207 (1999)

    Article  Google Scholar 

  6. Berbinau, P., Soutis, C., Guz, I.A.: Compressive failure of 0o unidirectional carbon-fibre-reinforced plastic (CFRP) laminates by fibre micobuckling. Compos. Sci. Technol. 59, 1451–1455 (1999)

    Article  Google Scholar 

  7. Anderson, T.L.: Fracture Mechanics – Fundamentals and Applications. CRC Press, New York (1995)

    Google Scholar 

  8. Kashtalyan, M., Soutis, C.: The effect of delaminations induced by transverse cracks and splits on stiffness properties of composite laminates. Compos. Part A 31, 107–119 (2000)

    Article  Google Scholar 

  9. Kashtalyan, M., Soutis, C.: Analysis of local delaminations in composite laminates with angle-ply matrix cracks. Int. J. Solids Struct. 39, 1515–1537 (2002)

    Article  Google Scholar 

  10. Kashtallyan, M.Y., Soutis, C.: Mechanisms of internal damage and their effect on the behaviour and properties of cross-ply composite laminates. Int. Appl. Mech. 38(6), 641–657 (2002)

    Article  Google Scholar 

  11. Kashtalyan, M., Soutis, C.: Stiffness degradation in cross-ply laminates damaged by transverse cracking and splitting. Compos. Part A 31, 335–351 (2000)

    Article  Google Scholar 

  12. Zhang, J., Soutis, C., Fan, J.: Strain energy release rate associated with local delamination in cracked composite laminates. Composites 25(9), 851–862 (1994)

    Article  Google Scholar 

  13. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber-reinforced materials. J. Compos. Mater. 7, 448–464 (1973)

    Article  Google Scholar 

  14. Hashin, Z.: Failure criteria for uni-directional fibre composites. J. Appl. Mech. 47(1), 329–334 (1980)

    Article  Google Scholar 

  15. Naim, J.A.: The strain energy release rate of composite microcracking: a variational approach. J. Compos. Mater. 23(11), 1106–1129 (1989)

    Article  Google Scholar 

  16. Varna, J., Berglund, L.A.: Multiple transverse cracking and stiffness reduction in cross-ply laminates. J. Compos. Technol. Res. 13(2), 97–106 (1991)

    Article  Google Scholar 

  17. Varna, J., Berglund, L.A.: A model for prediction of the transverse cracking strain in cross-ply laminates. J. Reinf. Plast. Compos. 11(7), 708–728 (1992)

    Article  Google Scholar 

  18. Berglund, L.A., Varna, J.: Thermo-elastic properties of composite laminates with transverse cracks. J. Compos. Technol. Res. 16(1), 77–87 (1994)

    Article  Google Scholar 

  19. Zhang, J., Fan, J., Soutis, C.: Analysis of multiple matrix cracking in [±θ m /90 n ] s composite laminates. Part 1: In-plane stiffness properties. Composites 23(5), 291–8 (1992)

    Article  Google Scholar 

  20. Zhang, J., Fan, J., Soutis, C.: Analysis of multiple matrix cracking in [±θ m /90 n ] s composite laminates. Part 2: Development of transverse ply cracks. Composites 23(5), 299–304 (1992)

    Article  Google Scholar 

  21. Kachanov, L.M.: On the creep rupture time. Izv AN SSSR Otd Tekhn Nauk 8, 26–31 (1958)

    Google Scholar 

  22. Rabotnov, Y.N.: On the Equations of State for Creep. Progress in Applied Mechanics, Prager Anniversary Volume. Macmillan, NewYork (1963)

    Google Scholar 

  23. Donadon, M.V., Iannucci, L., Falzon, B.G., Hodgkinson, J.M., Almeida, S.F.M.: A progressive failure model for composite laminates subjected to low velocity impact damage. Comput. Struct. 86, 1232–1252 (2008)

    Article  Google Scholar 

  24. Faggiani, A., Falzon, B.G.: Predicting low-velocity impact damage on a stiffened composite panel. Compos. Part A 41, 737–749 (2010)

    Article  Google Scholar 

  25. Iannucci, L., Ankersen, J.: An energy based damage model for thin laminated composites. Compos. Sci. Technol. 66, 934–951 (2006)

    Article  Google Scholar 

  26. Yokoyama, N.O., Donadon, M.V., Almeida, S.F.M.: A numerical study on the impact resistance of composite shells using an energy based failure model. Compos. Struct. 93, 142–152 (2010)

    Article  Google Scholar 

  27. Shi, Y., Swati, T., Soutis, C.: Modelling damage evolution in composite laminates subjected to low velocity impact. Compos. Struct. 94, 2902–2913 (2012)

    Article  Google Scholar 

  28. Han, Y., Hahn, H.T., Croman, R.B.: A simplified analysis of transverse ply cracking in cross-ply laminates. Compos. Sci. Technol. 31, 165–177 (1988)

    Article  Google Scholar 

  29. Hahn, H.T., Han, Y.M., Kim, R.Y.: Resistance curves for ply cracking in composite laminates. Proc 33rd Int SAMPE Symp. 1101–8 (1998)

  30. Fan, J., Zhang, J.: In-situ damage evolution and micro/macro transition for laminated composites. Compos. Sci. Technol. 47(2), 107–118 (1993)

    Article  Google Scholar 

  31. Camanho, P.P., Dávila, C.G.. Mixed-Mode decohesion finite elements for the simulation of delamination in composite materials. Tech. Rep. NASA/TM-2002-211737 (2002).

  32. ABAQUS.: ABAQUS Version 6.10, Dessault systemes. Providence (2010).

  33. Turon, A.: Simulation of delamination in composites under quasi-static and fatigue loading using cohesive zone models. PHD Dissertation, Universitat de Girona (2006)

  34. Ankersen, J., Davies, G.A.O.: Interface elements–advantages and limitations in CPRP delamination modelling. In 17th International Conference on Composite Materials, Edinburgh, UK (2009)

  35. Pinho, S.T., Iannucci, L., Robinson, P.: Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos. Sci. Technol. 66(13), 2069–2079 (2006)

    Article  Google Scholar 

  36. Turon, A., Dávila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Engng. Fract. Mech. 74, 1665–1682 (2007)

    Article  Google Scholar 

  37. Daudeville, L., Allix, O., Ladevèze, P.: Delamination analysis by damage mechanics: Some applications. Compos. Engng. 5(1), 17–24 (1995)

    Article  Google Scholar 

  38. Gonçalves, J.P.M., de Moura, M.F.S.F., de Castro, P.M.S.T., Marques, A.T.: Interface element including point-to-surface constraints for three dimensional problems with damage propagation. Egngn. Comput. 17(1), 28–47 (2000)

    Article  Google Scholar 

  39. Mi, Y., Crisfield, M.A.: Analytical Derivation of Load/Displacement Relationships for Mixed-Mode Delamination and Comparison with Finite Element Results. Imperial College, Department of Aeronautics, London (1996)

    Google Scholar 

  40. Schelleckens, J.C.J., de Borst, R.: On the numerical integration of interface elements. Int. J. Numer. Methods. Engng. 36, 43–66 (1993)

    Article  Google Scholar 

  41. Zou, Z., Reid, S.R., Li, S., Soden, P.D.: Modelling interlaminar and intralaminar damage in filment wound pipes under quasi-static indentation. J. Compos. Mater. 36, 477–499 (2002)

    Article  Google Scholar 

  42. Camanho, P.P., Dávila, C.G., de Moura, M.F.: Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37(16), 1415–1438 (2003)

    Article  Google Scholar 

  43. Wang, A.S.D.: Fracture mechanics of sublaminate cracks in composite materials. Compos. Technol. Rev. 6, 45–62 (1984)

    Article  Google Scholar 

  44. Crossman, F.W., Wang, A.S.D.: The dependence of transverse cracks and delamination on ply thickness in graphite-epoxy laminates. Damage Compos Mater op. ct. 118–39

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Soutis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Pinna, C. & Soutis, C. Interface Cohesive Elements to Model Matrix Crack Evolution in Composite Laminates. Appl Compos Mater 21, 57–70 (2014). https://doi.org/10.1007/s10443-013-9349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-013-9349-0

Keywords

Navigation