Skip to main content
Log in

Effects of Interphase Damage and Residual Stresses on Mechanical Behavior of Particle Reinforced Metal-Matrix Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Mechanical behavior of aluminum matrix composites reinforced with SiC particles are predicted using an axisymmetric micromechanical finite element model. The model aims to study initiation and propagation of interphase damage subjected to combination of thermal and uniaxial loading. Effects of manufacturing process thermal residual stresses and interphase de-bonding are considered. The model includes a square Representative Volume Element (RVE) from a cylindrical unit cell representing a quarter of SiC particle surrounded by Al-3.5wt.%Cu matrix. Suitable boundary conditions are defined to include effects of combined thermal and uniaxial tension loading on the RVE. An appropriate damage criterion with a linear relationship between radial and shear stresses for interphase damage is introduced to predict initiation and propagation of interphase de-bonding during loading. A damage user subroutine is developed and coupled to the finite element software to model interphase damage. Overall Stress-strain behavior of particulate metal-matrix composite by considering residual stresses is compared with experimental data to estimate interphase strength. Effects of thermal residual stresses in elastic, de-bonding and plastic zones of composite system are discussed in details. Furthermore, parametric study results show high influence of interphase strength on the overall mechanical behavior of composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schwarts, M.M.: Properties, nondestructive testing and repair. Composite materials. New Jersey, USA (1997)

  2. Ceschini, L., Bosi, C., Casagrande, A., Garagnani, G.L.: Effect of thermal treatment and recycling on the tribological behaviour of an AlSiMg-SiCp composite. Wear 25, 1377–1385 (2001)

    Article  Google Scholar 

  3. Lloyd, D.J.: Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39(1), 1–23 (1994)

    Article  Google Scholar 

  4. Llorca, J., Needleman, A., Suresh, S.: An analysis of the effects of matrix viod growth on deformation and ductility in metal-matrix composites. Acta. Metall. Mater. 39(10), 2317–2335 (1991)

    Article  Google Scholar 

  5. Majumdar, B.S., Newaz, G.M.: Inelastic deformation of metal-matrix composites: plasticity and damage mechanisms. Philos. Mag. A 66(2), 187–212 (1992)

    Article  Google Scholar 

  6. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy. Soc. London 241, 376–396 (1957)

    Article  Google Scholar 

  7. Qu, J.: Eshelby tensor for an elastic inclusion with slightly weakened interfaces. J. Appl. Mech. 60(4), 1048–1050 (1993)

    Article  Google Scholar 

  8. Aboudi, J.: Damage in composites modelling of imperfect bonding. Compos. Sci. Technol. 28, 103–128 (1987)

    Article  Google Scholar 

  9. Mura, T., Furuhashi, R.: The elastic inclusion with a sliding interface. ASME. J. Appl. Mech. 51, 308–310 (1984)

    Article  Google Scholar 

  10. Hashin, Z.: The spherical inclusion with imperfect interface. ASME. J. Appl. Mech. 62, 860–866 (1990)

    Google Scholar 

  11. Wang, W.H., Sadeghpour, K., Baran, G.: Finite element analysis of the effect of an interphase on toughening of a particle reinforced polymer composite. Compos. Part A 39, 956–964 (2008)

    Article  Google Scholar 

  12. Voyiadjis, G.Z., Allen, D.H.: Damage and interfacial debonding in composites. Studies in Applied Mechanics. Elsevier, Amsterdam (1996)

    Google Scholar 

  13. Shao, J.C., Xiao, B.L., Wang, Q.Z., Yang, K.: An enhanced FEM model for particle size dependent flow strengthening and interface damage in particle reinforced metal matrix composites. Compos. Sci. Technol. 71(1), 39–45 (2011)

    Article  Google Scholar 

  14. Yang, H., Chen, P., Jiang, J., Tohgo, K.: Incremental damage theory of particulate-reinforced composites with a ductile interphase. Compos. Struct. 93, 2655–2662 (2011)

    Article  Google Scholar 

  15. Lauke, B.: Determination of adhesion strength between a coated particle and polymer matrix. Compos. Sci. Technol. 66, 3153–3160 (2006)

    Article  Google Scholar 

  16. Shabana, M.: A micromechanical model for composites containing multi-layered interphases. Compos. Struct. 101, 265–273 (2013)

    Article  Google Scholar 

  17. Lee, H.K., Pyo, S.H.: An elasto plastic multi-level damage model for ductile matrix composites considering evolutionary weakend interface. Int. J. Solids Struct. 45, 1614–1631 (2008)

    Article  Google Scholar 

  18. Benabou, L., Benseddiq, N., Naїt-Abdelaziz, M.: Comparative analysis of damage at interfaces of composites. Compos. Part B 33, 215–224 (2002)

    Article  Google Scholar 

  19. Qing, H.: Automatic generation of 2D micromechanical finite element model silicon-carbide/aluminium metal matrix composites: effects of the boundary conditions. Mater. Des. 44, 446–453 (2013)

    Article  Google Scholar 

  20. Wisnom, M.R.: Micromechanical Modelling of the Transverse Tensile Ductility of Unidirectional Silicon Carbide/6061 Aluminum. Compos. Technol. Res. 14(2), 61–69 (1992)

    Article  Google Scholar 

  21. Aghdam, M.M., Falahatgar, S.R., Gorji, M.: Micromechanical consideration of interface damage in fiber reinforced Ti-alloy under various combined loading conditions. Compos. Sci. Technol. 8, 3406–3411 (2008)

    Article  Google Scholar 

  22. Shokrieh, M.M., Ghanei Mohammadi, A.R.: Finite element modeling of residual thermal stresses in fiber-reinforced composites using different representative volume elements. Proceedings of the World Congress on Engineering, London 2010, ISBN: 978-988-18210-7-2

  23. Durodola, J.F., Derby, B.: An analysis of thermal residual stresses in Ti-6Al-4V alloy reinforced with SiC and Al2O3 fibers. Acta. Metall. Mater. 42(5), 1525–1534 (1994)

    Article  Google Scholar 

  24. Liu, H.T., Sun, L.Z.: Effects of thermal residual stresses on effective elastoplastic behaviour of metal matrix composites. Int. J. Solids Struct. 41(8), 2189–2203 (2004)

    Article  Google Scholar 

  25. Bouafia, F., Serier, B., Bouiadjra, B.A.: Finite element analysis of the thermal residual stresses of Sic particle reinforced aluminium composite. Comput. Mater. Sci. 54, 195–203 (2012)

    Article  Google Scholar 

  26. Yanese, K., Ju, J.W.: Size-dependent probabilistic micromechanical damage mechanics for particle-reinforced metal matrix composites. Int. J. Damage Mech. 20(7), 1021–1048 (2011)

    Article  Google Scholar 

  27. Hibbitt, K. & Sorenson, Inc., ABAQUS/Standard user subroutines reference manual, “USDFLD”, Section 1.1.45, Version 6.9.1., USA (2009)

  28. Llorca, J., Martin, A., Ruiz, J., Elices, M.: Particulate Fracture during Deformation of a Spray Formed Metal- Matrix Composite. Metall. Trans. A 24, 1575 (1993)

    Article  Google Scholar 

  29. Segurado, J., Gonzalez, C., LLorca, J.: A numerical investigation of the effect of particle clustering on the mechanical properties of composites. Acta Mater. 51, 2355–2369 (2003)

    Article  Google Scholar 

  30. Tvergaard, V.: On localization in ductile materials containing spherical voids. Int. J. Fract. 18, 237–252 (1982)

    Google Scholar 

  31. Marur, P.R.: Estimation of effective elastic properties and interface stress concentration in particulate composites by unit cell methods. Acta Mater. 52, 1263–1270 (2004)

    Article  Google Scholar 

  32. Zong, Li, J., Wang, B.Y., Zhuang, Y.M.: Experiment and modeling of mechanical properties on iron matrix composites reinforced by different types of ceramic particles. Mater. Sci. Eng. A 527, 7545–7551 (2010)

    Article  Google Scholar 

  33. Su, X.F., Chen, H.R., Kennedy, D., Williams, F.W.: Effects of interphase strength on the damage modes and mechanical behaviour of metal-matrix composites. Compos. Part A 30, 257–266 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Aghdam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghdam, M.M., Shahbaz, M. Effects of Interphase Damage and Residual Stresses on Mechanical Behavior of Particle Reinforced Metal-Matrix Composites. Appl Compos Mater 21, 429–440 (2014). https://doi.org/10.1007/s10443-013-9348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-013-9348-1

Keywords

Navigation