Skip to main content
Log in

Cryogenic Interlaminar Fracture Properties of Woven Glass/Epoxy Composite Laminates Under Mixed-Mode I/III Loading Conditions

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

We characterize the combined Mode I and Mode III delamination fracture behavior of woven glass fiber reinforced polymer (GFRP) composite laminates at cryogenic temperatures. The eight-point bending plate (8PBP) tests were conducted at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K) using a new test fixture. A three-dimensional finite element analysis was also performed to calculate the energy release rate distribution along the delamination front, and the delamination fracture toughnesses were evaluated for various mixed-mode I/III ratios. Furthermore, the microscopic examinations of the fracture surfaces were carried out with scanning electron microscopy (SEM), and the mixed-mode I/III delamination fracture mechanisms in the woven GFRP laminates at cryogenic temperatures were assessed. The fracture properties were then correlated with the observed characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shindo, Y., Horiguchi, K., Wang, R., Kudo, H.: Double cantilever beam measurement and finite element analysis of cryogenic mode I interlaminar fracture toughness of glass-cloth/epoxy laminates. ASME J. Eng. Mater. Technol. 123, 191–197 (2001)

    Article  CAS  Google Scholar 

  2. Horiguchi, K., Shindo, Y., Kudo, H., Kumagai, S.: End-notched flexure testing and analysis of mode II interlaminar fracture behavior of glass-cloth/epoxy laminates at cryogenic temperatures. J. Compos. Technol. Res. 24(4), 239–245 (2002)

    Article  CAS  Google Scholar 

  3. Shindo, Y., Sato, T., Narita, F., Sanada, K.: Mode II interlaminar fracture and damage evaluation of GFRP woven laminates at cryogenic temperatures using the 4ENF specimen. J. Compos. Mater. 42(11), 1089–1101 (2008)

    Article  Google Scholar 

  4. Rizov, V., Shindo, Y., Horiguchi, K., Narita, F.: Mode III interlaminar fracture behavior of glass fiber reinforced polymer woven laminates at 293 to 4 K. Appl. Compos. Mater. 13, 287–304 (2006)

    Article  CAS  Google Scholar 

  5. Shindo, Y., Shinohe, D., Kumagai, S., Horiguchi, K.: Analysis and testing of mixed-mode interlaminar fracture behavior of glass-cloth/epoxy laminates at cryogenic temperatures. ASME J. Eng. Mater. Technol. 127, 468–475 (2005)

    Article  CAS  Google Scholar 

  6. Shindo, Y., Takahashi, S., Takeda, T., Narita, F., Watanabe, S.: Mixed-mode interlaminar fracture and damage characterization in woven fabric-reinforced glass/epoxy composite laminates at cryogenic temperatures using the finite element and improved test methods. Eng. Fract. Mech. 75, 5101–5112 (2008)

    Article  Google Scholar 

  7. Pereira, A.B., de Morais, A.B.: Mixed-mode I + III interlaminar fracture of carbon/epoxy laminates. Compos. Part A Appl. Sci. Manuf. 40, 518–523 (2009)

    Article  Google Scholar 

  8. Hahn, H.T., Pandey, R.: A micromechanics model for thermoelastic properties of plain weave fabric composites. ASME J. Eng. Mater. Technol. 116, 517–523 (1994)

    Article  CAS  Google Scholar 

  9. Shindo, Y., Miura, M., Takeda, T., Narita, F., Watanabe, S.: Piezoelectric control of delamination response in woven fabric composites under mode I loading. Acta Mech. (in press)

  10. Miura, M., Shindo, Y., Takeda, T., Narita, F.: Effect of damage on the interlaminar shear properties of hybrid composite laminates at cryogenic temperatures. Compos. Struct. 93, 124–131 (2010)

    Article  Google Scholar 

  11. Rybicki, E.F., Kanninen, M.F.: A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Fract. Mech. 9, 931–938 (1977)

    Article  Google Scholar 

  12. Krueger, R.: Virtual crack closure technique: history, approach, and applications. ASME Appl. Mech. Rev. 57(2), 109–143 (2004)

    Article  Google Scholar 

  13. Sundararaman, V., Davidson, B.D.: An unsymmetric double cantilever beam test for interfacial fracture toughness determination. Int. J. Solids Struct. 34(7), 799–817 (1997)

    Article  Google Scholar 

  14. Sharif, F., Kortschot, M.T., Martin, R.H.: Mode III delamination using a split cantilever beam. In: Martin, R.H. (ed.) Composite Materials: Fatigue and Fracture, vol. 5, pp. 85–99. ASTM STP 1230, American Society for Testing and Materials, Philadelphia (1995)

    Google Scholar 

  15. Greenhalgh, E.S., Rogers, C., Robinson, P.: Fractographic observations on delamination growth and the subsequent migration through the laminate. Compos. Sci. Technol. 69, 2345–2351 (2009)

    Article  CAS  Google Scholar 

  16. Lee, S.M.: Mode II delamination failure mechanisms of polymer matrix composites. J. Mater. Sci. 32, 1287–1295 (1997)

    Article  CAS  Google Scholar 

  17. Gregory, J.R., Spearing, S.M.: Constituent and composite quasi-static and fatigue fracture experiments. Compos. Part A Appl. Sci. Manuf. 36, 665–674 (2005)

    Article  Google Scholar 

  18. Nishijima, S., Okada, T., Honda, Y.: Evaluation of epoxy resin by positron annihilation for cryogenic use. Adv. Cryog. Eng. 40, 1137–1144 (1994)

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Grant-in-Aid for JSPS Fellows (22·4782).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhide Shindo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura, M., Shindo, Y., Takeda, T. et al. Cryogenic Interlaminar Fracture Properties of Woven Glass/Epoxy Composite Laminates Under Mixed-Mode I/III Loading Conditions. Appl Compos Mater 20, 587–599 (2013). https://doi.org/10.1007/s10443-012-9290-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-012-9290-7

Keywords

Navigation